Carla M.N. Azevedo
Pontifícia Universidade Católica do Rio Grande do Sul
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Carla M.N. Azevedo.
Journal of Hazardous Materials | 2015
Ariela M. Cardoso; Martha B. Horn; Lizete S. Ferret; Carla M.N. Azevedo; Marçal Pires
Several researchers have reported zeolite synthesis using coal ash for a wide range of applications. However, little attention has been given to green processes, including moderate synthesis conditions, using waste as raw material and effluent reuse or reduction. In this study, Brazilian coal fly ashes were used for integrated synthesis of zeolites 4A and Na-P1 by two different routes and under moderate operating conditions (temperature and pressure). Both procedures produced zeolites with similar conversions (zeolite 4A at 82% purity and zeolite Na-P1 at 57-61%) and high CEC values (zeolites 4A: 4.5meqCa(2+)g(-1) and zeolites Na-P1: 2.6-2.8meqNH4(+)g(-1)). However, process 1 generated less effluent for the zeolite mass produced (7mLg(-1)), with low residual Si and Al levels and 74% of the Si available in the coal fly ash incorporated into the zeolite, while only 55% is used in process 2. For use as a builder in detergents, synthetic zeolite 4A exhibited conformity parameters equal to or greater than those of the commercial zeolite adopted as reference. Treatment of swine wastewater with zeolite Na-P1 resulted in a high removal capacity for total ammoniacal nitrogen (31mgg(-1)).
Journal of the Brazilian Chemical Society | 2010
Alexandre Paprocki; Heldiane S. dos Santos; Marta E. Hammerschitt; Marçal Pires; Carla M.N. Azevedo
The aim of this study is to determine the kinetics of the Acid Black 1 dye by oxidizing action of ozone and to evaluate the influence of chloride ion contamination on the dye degradation. Pseudo-first order kinetics was observed for both decolorization (620 nm) and aromatic structure (321 nm) degradations. A complete color removal was verified in 25 min ([dye]0 = 1.8 × 10-5 mol L-1), while aromatic structures degraded at slower rates. The presence of chloride ion, the principal impurity of the solid dye reagents, influences significantly the ozonation rate (-42%), even at low chloride concentration (5.6 × 10-4 mol L-1). The most probable mechanism for the chloride suppression effect involves a direct reaction between O3 and Cl- generating HOCl, among other by-products. In despite of that, ozonation could be a competitive degradation process for this dye.
Waste Management | 2016
Suzana Frighetto Ferrarini; Heldiane S. dos Santos; Luciana Gampert Miranda; Carla M.N. Azevedo; Sandra Maria Maia; Marçal Pires
Preservatives such as chromated copper arsenate (CCA) are used to increase the resistance of wood to deterioration. The components of CCA are highly toxic, resulting in growing concern over the disposal of the waste generated. The aim of this study was to investigate the removal of Cu, Cr and As present in CCA-treated eucalyptus wood from utility poles removed from service in southern Brazil, in order to render them non-hazardous waste. The removal was carried out by acid leaching in bench-scale and applying optimal extractor concentration, total solid content, reactor volume, temperature and reaction time obtained by factorial experiments. The best working conditions were achieved using three extraction steps with 0.1 mol L(-1) H2SO4 at 75°C for 2h each (total solid content of 15%), and 3 additional 1h-long washing steps using water at ambient temperature. Under these conditions, removal of 97%, 85% and 98% were obtained for Cu, Cr and As, respectively, rendering the decontaminated wood non-hazardous waste. The wastewater produced by extraction showed acid pH, high organic loading as well as high concentrations of the elements, needing prior treatment to be discarded. However, rinsing water can be recycled in the extraction process without compromising its efficiency. The acid extraction is a promising alternative for CCA removal from eucalyptus wood waste in industrial scale.
Química Nova | 2012
Suzana Frighetto Ferrarini; Heldiane S. dos Santos; Luciana Gampert Miranda; Carla M.N. Azevedo; Marçal Pires; Sandra Maria Maia
Classification of waste wood treated with chromated copper arsenate (CCA) and boron/fluorine preservatives, according to NBR 10004, was investigated. The leaching test (ABNT NBR 10005) for As and Cr, and solubilization test (ABNT NBR 10006) for F, were applied to out-of-service wooden poles. Concentrations of As and Cr in leachates were determined by ICP-MS and of F by ESI. Values for As were higher than 1 mg L-1 classifying the waste as hazardous material (Class I) whereas values for F (> 1.5 mg L-1) were non-hazardous but indicated non-inert material (Class IIA).
Journal of the Brazilian Chemical Society | 2017
Renato Cataluña; Zeban Shah; Leidimara Pelisson; Nattan R. Caetano; Rosângela da Silva; Carla M.N. Azevedo
An evaluation was made to determine the effect of the glycerides presence resulting from the incomplete conversion of soybean biodiesel produced via alkaline catalysis and ethylic route on engine performance, and emissions in formulations containing 10 and 20% (m/m) of biodiesel used as additives in base diesel with low sulfur content and cetane ratings of 45 and 50. By way of comparison, similar formulations were used with soybean biodiesel methyl route with low concentration of glycerides. Tests on a diesel cycle engine with a mechanical fuel injection system indicated that the presence of glycerides decreases the volatility of biodiesel and increase the cetane number of fuels. The higher the cetane number, the higher the particulate matter emissions and the lower the unburned hydrocarbon emissions. Formulations with cetane number 50 showed higher emissions of particulate matter. The presence of glycerides in biodiesel reduces the fuel’s vapor pressure, thereby increasing the cetane number and emissions of particulate matter and lower emissions of unburned hydrocarbons. The specific consumption of fuels formulated with biodiesel increases due to its lower enthalpy of combustion and to the presence of glycerides in fuels formulated with soybean biodiesel produced via the ethanol route.
Química Nova | 2013
Vera L. V. Fallavena; Cristiane S. de Abreu; Taísi D. Inácio; Marçal Pires; Carla M.N. Azevedo; Iolanda D. Fernandes; Lizete S. Ferret; M. Rosa Martinez Tarazona
The use and characterization of the first Certified Reference Material (CRM) of Brazilian coal for analytical quality control are presented. All results were determined within the limits of repeatability and reproducibility allowed under the standards. Notable among the characterization parameters was the mineral matter content (45.39%) obtained by an alternative procedure showing a low relative error (-2.1%) compared to the standard technique (low ashing temperature). The possible expanded application of this CRM application in national laboratories, beyond the certificated and reference parameters, has advantages such as lower cost and easy availability, but round robin tests must be performed.
Materia-rio De Janeiro | 2009
Marçal Pires; Carla M.N. Azevedo; C.Z. Ramos; V.M. Canalli
In polymer electrode fuel cells the main component is the membrane/electrodes assembly (MEA). Gas diffusion electrodes (GDL) are the principal components of the MEA, being a composite material constituted of diffusion and catalyst layers, formed by carbon powder, platinum, PTFE and Nafion polymers deposed over a subtract (carbon paper or cloth). These layers present roughness and porous surfaces of complex characterization. The aim of this work is to characterize GDL. The surface wettability was assessed by drop water external contact angle measurements. The advancing and receding angles were measured and used to estimate the hysteresis and the equilibrium angle. Morphology and composition were studied using scanning electronic microscopy and energy dispersive spectroscopy while porosity was measured by imbibing n-heptane and water into substrates to quantify hydrophilic/hydrofobic pores. Morphologic study indicated that PTFE incorporation into carbon power is a critical step on diffusion layers fabrication. A greater amount of PTFE results in decrease the total porosity and increases the percent of hydrophobic porous for both substrates. The results obtained in angles contact determination present good precision, especially for the composite deposited over carbon cloth. The values obtained for contact angels of the catalyst layers were lower than ones measured
Dyes and Pigments | 2006
Aline de O. Martins; Vicente M. Canalli; Carla M.N. Azevedo; Marçal Pires
Fuel | 2015
Ariela M. Cardoso; Alexandre Paprocki; Lizete S. Ferret; Carla M.N. Azevedo; Marçal Pires
Analytica Chimica Acta | 2007
Marilia Philippi; Heldiane S. dos Santos; Aline de O. Martins; Carla M.N. Azevedo; Marçal Pires