Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carla M.P. Cardoso is active.

Publication


Featured researches published by Carla M.P. Cardoso.


Stem Cell Research & Therapy | 2013

Mesenchymal stem cells from umbilical cord matrix, adipose tissue and bone marrow exhibit different capability to suppress peripheral blood B, natural killer and T cells

Andreia Ribeiro; Paula Laranjeira; Sandrine Mendes; Isabel Velada; Cristiana de Sousa Leite; Pedro Z. Andrade; Francisco dos Santos; Ana Henriques; Mário Grãos; Carla M.P. Cardoso; António Martinho; M. Luísa Pais; Cláudia Lobato da Silva; J. M. S. Cabral; Hélder Trindade; Artur Paiva

IntroductionThe ability to self-renew, be easily expanded in vitro and differentiate into different mesenchymal tissues, render mesenchymal stem cells (MSCs) an attractive therapeutic method for degenerative diseases. The subsequent discovery of their immunosuppressive ability encouraged clinical trials in graft-versus-host disease and auto-immune diseases. Despite sharing several immunophenotypic characteristics and functional capabilities, the differences between MSCs arising from different tissues are still unclear and the published data are conflicting.MethodsHere, we evaluate the influence of human MSCs derived from umbilical cord matrix (UCM), bone marrow (BM) and adipose tissue (AT), co-cultured with phytohemagglutinin (PHA)-stimulated peripheral blood mononuclear cells (MNC), on T, B and natural killer (NK) cell activation; T and B cells’ ability to acquire lymphoblast characteristics; mRNA expression of interleukin-2 (IL-2), forkhead box P3 (FoxP3), T-bet and GATA binding protein 3 (GATA3), on purified T cells, and tumor necrosis factor-alpha (TNF-α), perforin and granzyme B on purified NK cells.ResultsMSCs derived from all three tissues were able to prevent CD4+ and CD8+ T cell activation and acquisition of lymphoblast characteristics and CD56dim NK cell activation, wherein AT-MSCs showed a stronger inhibitory effect. Moreover, AT-MSCs blocked the T cell activation process in an earlier phase than BM- or UCM-MSCs, yielding a greater proportion of T cells in the non-activated state. Concerning B cells and CD56bright NK cells, UCM-MSCs did not influence either their activation kinetics or PHA-induced lymphoblast characteristics, conversely to BM- and AT-MSCs which displayed an inhibitory effect. Besides, when co-cultured with PHA-stimulated MNC, MSCs seem to promote Treg and Th1 polarization, estimated by the increased expression of FoxP3 and T-bet mRNA within purified activated T cells, and to reduce TNF-α and perforin production by activated NK cells.ConclusionsOverall, UCM-, BM- and AT-derived MSCs hamper T cell, B cell and NK cell-mediated immune response by preventing their acquisition of lymphoblast characteristics, activation and changing the expression profile of proteins with an important role in immune function, except UCM-MSCs showed no inhibitory effect on B cells under these experimental conditions. Despite the similarities between the three types of MSCs evaluated, we detect important differences that should be taken into account when choosing the MSC source for research or therapeutic purposes.


PLOS ONE | 2009

Depletion of Kinesin 5B Affects Lysosomal Distribution and Stability and Induces Peri-Nuclear Accumulation of Autophagosomes in Cancer Cells

Carla M.P. Cardoso; Line Groth-Pedersen; Maria Høyer-Hansen; Thomas Kirkegaard; Elizabeth Corcelle; Jens S. Andersen; Marja Jäättelä; Jesper Nylandsted

Background Enhanced lysosomal trafficking is associated with metastatic cancer. In an attempt to discover cancer relevant lysosomal motor proteins, we compared the lysosomal proteomes from parental MCF-7 breast cancer cells with those from highly invasive MCF-7 cells that express an active form of the ErbB2 (ΔN-ErbB2). Methodology/Principal Findings Mass spectrometry analysis identified kinesin heavy chain protein KIF5B as the only microtubule motor associated with the lysosomes in MCF-7 cells, and ectopic ΔN-ErbB2 enhanced its lysosomal association. KIF5B associated with lysosomes also in HeLa cervix carcinoma cells as analyzed by subcellular fractionation. The depletion of KIF5B triggered peripheral aggregations of lysosomes followed by lysosomal destabilization, and cell death in HeLa cells. Lysosomal exocytosis in response to plasma membrane damage as well as fluid phase endocytosis functioned, however, normally in these cells. Both HeLa and MCF-7 cells appeared to express similar levels of the KIF5B isoform but the death phenotype was weaker in KIF5B-depleted MCF-7 cells. Surprisingly, KIF5B depletion inhibited the rapamycin-induced accumulation of autophagosomes in MCF-7 cells. In KIF5B-depleted cells the autophagosomes formed and accumulated in the close proximity to the Golgi apparatus, whereas in the control cells they appeared uniformly distributed in the cytoplasm. Conclusions/Significance Our data identify KIF5B as a cancer relevant lysosomal motor protein with additional functions in autophagosome formation.


Traffic | 2010

Rab10 Regulates Phagosome Maturation and Its Overexpression Rescues Mycobacterium-Containing Phagosomes Maturation

Carla M.P. Cardoso; Luisa Jordao; Otilia V. Vieira

Phagosome maturation follows a defined biochemical program and, in the vast majority of cases, the microbe inside the phagosome is killed and digested. Although, an important number of pathogens, including Mycobacterium tuberculosis, which kills around two million people every year, have acquired the ability to survive, and even replicate by arresting phagosomal maturation. To identify more of the machinery involved in phagocytosis and phagosomal maturation, we investigated the function of Rab10 in engulfment and maturation of inert particles and Mycobacterium bovis bacille Calmette‐Guérin (BCG). We showed that Rab10 association with phagosomes is transient and confocal microscopy revealed detectible levels of Rab10 on phagosomal membranes at very early time‐points, occurring even before Rab5 acquisition. Rab10 recruitment had strong functional consequence, as the knockdown of endogenous Rab10 by RNA interference or overexpression of Rab10 dominant‐negative mutant delayed maturation of phagosomes of IgG‐opsonized latex beads or heat killed‐mycobacteria. These results can be explained, at least in part, by the involvement of Rab10 in recycling of some phagosomal components. More importantly, overexpression of the constitutively active mutant of Rab10 partially rescued live‐Mycobacterium‐containing phagosomes maturation. Indeed, we found that the membrane harbouring Mycobacterium acquired early endosome antigen 1 (EEA‐1), a marker excluded from phagosomes in control cells. Altogether these results indicate that Rab10, acting upstream of Rab5, plays a prominent role in phagolysosome formation and can modulate Mycobacterium‐containing phagosomes maturation.


PLOS ONE | 2008

Surfactants as Microbicides and Contraceptive Agents: A Systematic In Vitro Study

Otilia V. Vieira; Diego O. Hartmann; Carla M.P. Cardoso; Daniel Oberdoerfer; Marta Baptista; Manuel A. S. Santos; Luís Pereira de Almeida; João Ramalho-Santos; Winchil L. C. Vaz

Background The urgent need for cheap and easy-to-use protection against both unwanted pregnancies and sexually transmitted diseases has stimulated considerable interest in the use of surfactants as microbicides, anti-viral, and contraceptive agents in recent years. In the present study we report a systematic in vitro evaluation of the microbicidal, anti-viral and contraceptive potential of cationic, anionic, zwitterionic, and non-ionic surfactants. Methodology/Principal Findings Toxicity was evaluated in mammalian columnar epithelial (MDCK) cells, human sperm cells, Candida albicans, Escherichia coli, Pseudomonas aeruginosa, Neisseria gonorrhoeae, Streptococcus agalactiae and Enterococcus faecalis. The inhibition of adenovirus and lentivirus infection of MDCK cells was also tested. A homologous series of cationic surfactants, alkyl-N,N,N-trimethylammonium bromides (CnTAB), with varying alkyl chains were shown to be bactericidal and fungicidal at doses that were related to the surfactant critical micelle concentrations (CMC), all of them at concentrations significantly below the CMC. In general, bacteria were more susceptible to this surfactant group than C. albicans and this organism, in turn, was more susceptible than MDCK cells. This suggests that the CnTAB may be useful as vaginal disinfectants only in so far as bacterial and fungal infections are concerned. None of the surfactants examined, including those that have been used in pre-clinical studies, showed inhibition of adenovirus or lentivirus infection of MDCK cells or spermicidal activity at doses that were sub-toxic to MDCK cells. Conclusions/Significance The results of this study lead us to propose that systematic analysis of surfactant toxicity, such as we report in the present work, be made a mandatory pre-condition for the use of these substances in pre-clinical animal and/or human studies.


Toxicology | 2009

Cisplatin impairs rat liver mitochondrial functions by inducing changes on membrane ion permeability: prevention by thiol group protecting agents.

José B.A. Custódio; Carla M.P. Cardoso; Maria S. Santos; Leonor M. Almeida; Joaquim A.F. Vicente; Maria A.S. Fernandes

Cisplatin (CisPt) is the most important platinum anticancer drug widely used in the treatment of head, neck, ovarian and testicular cancers. However, the mechanisms by which CisPt induces cytotoxicity, namely hepatotoxicity, are not completely understood. The goal of this study was to investigate the influence of CisPt on rat liver mitochondrial functions (Ca(2+)-induced mitochondrial permeability transition (MPT), mitochondrial bioenergetics, and mitochondrial oxidative stress) to better understand the mechanism underlying its hepatotoxicity. The effect of thiol group protecting agents and some antioxidants against CisPt-induced mitochondrial damage was also investigated. Treatment of rat liver mitochondria with CisPt (20nmol/mg protein) induced Ca(2+)-dependent mitochondrial swelling, depolarization of membrane potential (DeltaPsi), Ca(2+) release, and NAD(P)H fluorescence intensity decay. These effects were prevented by cyclosporine A (CyA), a potent and specific inhibitor of the MPT. In the concentration range of up to 40nmol/mg protein, CisPt slightly inhibited state 3 and stimulated state 2 and state 4 respiration rates using succinate as respiratory substrate. The respiratory indexes, respiratory control ratio (RCR) and ADP/O ratios, the DeltaPsi, and the ADP phosphorylation rate were also depressed. CisPt induced mitochondrial inner membrane permeabilization to protons (proton leak) but did not induce significant changes on mitochondrial H(2)O(2) generation. All the effects induced by CisPt on rat liver mitochondria were prevented by thiol group protecting agents namely, glutathione (GSH), dithiothreitol (DTT), N-acetyl-L-cysteine (NAC) and cysteine (CYS), whereas superoxide-dismutase (SOD), catalase (CAT) and ascorbate (ASC) were without effect. In conclusion, the anticancer drug CisPt: (1) increases the sensitivity of mitochondria to Ca(2+)-induced MPT; (2) interferes with mitochondrial bioenergetics by increasing mitochondrial inner membrane permeabilization to H(+); (3) does not significantly affect H(2)O(2) generation by mitochondria; (4) its mitochondrial damaging effects are protected by thiol group protecting agents. Based on these conclusions, it is possible to hypothesise that small changes on the redox-status of thiol groups, affecting membrane permeability to cations (Ca(2+) and H(+)) underlie CisPt-induced liver mitochondrial damage, putatively responsible for its hepatotoxicity. Therefore, we propose that CisPt-induced mitochondrial damage and consequent hepatotoxicity could be prevented by using thiol group protecting agents as therapeutic adjuvants.


PLOS ONE | 2014

Differentiation of human umbilical cord matrix mesenchymal stem cells into neural-like progenitor cells and maturation into an oligodendroglial-like lineage.

Cristiana de Sousa Leite; N. Tatiana Silva; Sandrine Mendes; Andreia Ribeiro; Joana Faria; Tânia Lourenço; Francisco dos Santos; Pedro Z. Andrade; Carla M.P. Cardoso; Margarida Vieira; Artur Paiva; Cláudia Lobato da Silva; J. M. S. Cabral; João B. Relvas; Mário Grãos

Mesenchymal stem cells (MSCs) are viewed as safe, readily available and promising adult stem cells, which are currently used in several clinical trials. Additionally, their soluble-factor secretion and multi-lineage differentiation capacities place MSCs in the forefront of stem cell types with expected near-future clinical applications. In the present work MSCs were isolated from the umbilical cord matrix (Whartons jelly) of human umbilical cord samples. The cells were thoroughly characterized and confirmed as bona-fide MSCs, presenting in vitro low generation time, high proliferative and colony-forming unit-fibroblast (CFU-F) capacity, typical MSC immunophenotype and osteogenic, chondrogenic and adipogenic differentiation capacity. The cells were additionally subjected to an oligodendroglial-oriented step-wise differentiation protocol in order to test their neural- and oligodendroglial-like differentiation capacity. The results confirmed the neural-like plasticity of MSCs, and suggested that the cells presented an oligodendroglial-like phenotype throughout the differentiation protocol, in several aspects sharing characteristics common to those of bona-fide oligodendrocyte precursor cells and differentiated oligodendrocytes.


Chemico-Biological Interactions | 2002

Thiol protecting agents and antioxidants inhibit the mitochondrial permeability transition promoted by etoposide: implications in the prevention of etoposide-induced apoptosis

José B.A. Custódio; Carla M.P. Cardoso; Leonor M. Almeida

Etoposide (VP-16) is known to promote cell apoptosis either in cancer or in normal cells as a side effect. This fact is preceded by the induction of several mitochondrial events, including increase in Bax/Bcl-2 ratio followed by cytochrome c release and consequent activation of caspase-9 and -3, reduction of ATP levels, depolarization of membrane potential (DeltaPsi) and rupture of the outer membrane. These events are apoptotic factors essentially associated with the induction of the mitochondrial permeability transition (MPT). VP-16 has been shown to stimulate the Ca2+-dependent MPT induction similarly to prooxidants and to promote apoptosis by oxidative stress mechanisms, which is prevented by glutathione (GSH) and N-acetylcysteine (NAC). Therefore, the aim of this work was to study the effects of antioxidants and thiol protecting agents on MPT promoted by VP-16, attempting to identify the underlying mechanisms on VP-16-induced apoptosis. The increased sensitivity of isolated mitochondria to Ca2+-induced swelling, Ca2+ release, depolarization of DeltaPsi and uncoupling of respiration promoted by VP-16, which are prevented by cyclosporine A proving that VP-16 induces the MPT, are also efficiently prevented by ascorbate, the primary reductant of the phenoxyl radicals produced by VP-16. The thiol reagents GSH, dithiothreitol and N-ethylmaleimide, which have been reported to prevent the MPT induction, also protect this event promoted by VP-16. The inhibition of the VP-16-induced MPT by antioxidants agrees with the prevention of etoposide-induced apoptosis by GSH and NAC and suggests the generation of oxidant species as a potential mechanism underlying the MPT that may trigger the release of mitochondrial apoptogenic factors responsible for apoptotic cascade activation.


Toxicology in Vitro | 2003

Comparison of the changes in adenine nucleotides of rat liver mitochondria induced by tamoxifen and 4-hydroxytamoxifen.

Carla M.P. Cardoso; António J. Moreno; Leonor M. Almeida; José B.A. Custódio

The antiestrogen tamoxifen (TAM) inhibits the growth of different estrogen receptor (ER)-negative cells. Recently, multiple effects of TAM on mitochondrial bioenergetic functions have been pointed to explain its ER-independent cell death mechanisms. We have shown that TAM and its major active metabolite 4-hydroxytamoxifen (OHTAM) induce depolarization of the mitochondrial membrane potential (DeltaPsi) and uncouple the mitochondrial respiration, depressing the oxidative phosphorylation efficiency. To clarify the biochemical mechanisms underlying the changes in the regulation of ATP synthesis and yield, in this work we evaluated the alterations of mitochondrial adenine nucleotides induced by both drugs and ascertained whether such changes could reflect a specific inhibition of either the adenine nucleotide translocase (ANT) or the phosphate carrier, as well as the activation of ATP hydrolysis due to DeltaPsi depolarization. We found that both antiestrogens caused a concentration-dependent decrease in mitochondrial ATP levels. Mitochondrial ADP and AMP were concomitantly increased with a subsequent decrease in the ATP/ADP or ATP/AMP ratios. The total concentration of adenine nucleotides also changed. Additionally, both drugs decreased the ANT content of mitochondria, inhibited the phosphate carrier and induced ATP hydrolysis. However, the effects of TAM were more drastic than those induced by OHTAM. Therefore, the depletion of ATP might result from an activation of ATP catabolism, as well as from a decrease in the mitochondrial content of ANT and partial inhibition of the phosphate carrier. Our data may explain the ER-independent effects and cytotoxicity of both drugs and, in agreement with other previous studies, suggest that OHTAM is much less toxic to mitochondria than TAM.


Biotechnology Journal | 2013

Human mesenchymal stem cells from the umbilical cord matrix: successful isolation and ex vivo expansion using serum-/xeno-free culture media.

Irina N. Simões; Joana S. Boura; Francisco dos Santos; Pedro Z. Andrade; Carla M.P. Cardoso; Jeffrey M. Gimble; Cláudia Lobato da Silva; J. M. S. Cabral

Mesenchymal stem cells (MSC) could potentially be applied in therapeutic settings due to their multilineage differentiation ability, immunomodulatory properties, as well as their trophic activity. The umbilical cord matrix (UCM) represents a promising source of MSC for biomedical applications. The number of cells isloated per umbilical cord (UC) unit is limited and ex vivo expansion is imperative in order to reach clinically meaningful cell numbers. The limitations of poorly defined reagents (e.g. fetal bovine serum, which is commonly used as a supplement for human MSC expansion) make the use of serum-/xeno-free conditions mandatory. We demonstrated the feasibility of isolating UCM-MSC by plastic adherence using serum-/xeno-free culture medium following enzymatic digestion of UCs, with a 100% success rate. 2.6 ± 0.21 × 10(5) cells were isolated per UC unit, of which 1.9 ± 0.21 × 10(5) were MSC-like cells expressing CD73, CD90, and CD105. When compared to adult sources (bone marrow-derived MSC and adipose-derived stem/stromal cells), UCM-MSC displayed a similar immunophenotype and similar multilineage differentiation ability, while demonstrating a higher expansion potential (average fold increase of 7.4 for serum-containing culture medium and 11.0 for xeno-free culture medium (P3-P6)). The isolation and expansion of UCM-MSC under defined serum-/xeno-free conditions contributes to safer and more effective MSC cellular products, boosting the usefulness of MSC in cellular therapy and tissue engineering.


Toxicology in Vitro | 2001

Mitochondrial permeability transition induced by the anticancer drug etoposide

JoséB.A. Custódio; Carla M.P. Cardoso; Vítor M.C. Madeira; Leonor M. Almeida

Etoposide (VP-16) is widely used for the treatment of several forms of cancer. The cytotoxicity of VP-16 has been assigned to the induction of apoptotic cell death but the signaling pathway for VP-16-induced apoptosis is essentially unknown. There is some evidence that this process depends on events associated with the loss of mitochondrial membrane potential (Delta Psi) and/or release of apoptogenic factors, putatively as a consequence of mitochondrial permeability transition (MPT) induction. This work evaluates the interference of VP-16 with MPT in vitro, which is characterized by the Ca(2+)-dependent depolarization of Delta Psi, the release of matrix Ca(2+) and by extensive swelling of mitochondria. Delta Psi depolarization and Ca(2+) release were measured with ion-selective electrodes, and mitochondrial swelling was monitored spectrophotometrically. Incubation of rat liver mitochondria with VP-16 results in a concentration-dependent induction of MPT, evidenced by an increased sensitivity to Ca(2+)-induced swelling, depolarization of Delta Psi, Ca(2+) release by mitochondria and stimulation of state 4 oxygen consumption. All of these effects are prevented by preincubating the mitochondria with cyclosporine A, a potent and specific inhibitor of the MPT. Therefore, VP-16 increases the sensitivity of isolated mitochondria to the Ca(2+)-dependent induction of the MPT. Together, these data provide a possible mechanistic explanation for the previously reported effects of VP-16 on apoptosis induction.

Collaboration


Dive into the Carla M.P. Cardoso's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. M. S. Cabral

Instituto Superior Técnico

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pedro Z. Andrade

Instituto Superior Técnico

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge