Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carla Pinheiro is active.

Publication


Featured researches published by Carla Pinheiro.


Annals of Botany | 2009

Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell.

Maria Manuela Chaves; Jaume Flexas; Carla Pinheiro

BACKGROUND Plants are often subjected to periods of soil and atmospheric water deficits during their life cycle as well as, in many areas of the globe, to high soil salinity. Understanding how plants respond to drought, salt and co-occurring stresses can play a major role in stabilizing crop performance under drought and saline conditions and in the protection of natural vegetation. Photosynthesis, together with cell growth, is among the primary processes to be affected by water or salt stress. SCOPE The effects of drought and salt stresses on photosynthesis are either direct (as the diffusion limitations through the stomata and the mesophyll and the alterations in photosynthetic metabolism) or secondary, such as the oxidative stress arising from the superimposition of multiple stresses. The carbon balance of a plant during a period of salt/water stress and recovery may depend as much on the velocity and degree of photosynthetic recovery, as it depends on the degree and velocity of photosynthesis decline during water depletion. Current knowledge about physiological limitations to photosynthetic recovery after different intensities of water and salt stress is still scarce. From the large amount of data available on transcript-profiling studies in plants subjected to drought and salt it is becoming apparent that plants perceive and respond to these stresses by quickly altering gene expression in parallel with physiological and biochemical alterations; this occurs even under mild to moderate stress conditions. From a recent comprehensive study that compared salt and drought stress it is apparent that both stresses led to down-regulation of some photosynthetic genes, with most of the changes being small (ratio threshold lower than 1) possibly reflecting the mild stress imposed. When compared with drought, salt stress affected more genes and more intensely, possibly reflecting the combined effects of dehydration and osmotic stress in salt-stressed plants.


Journal of Experimental Botany | 2011

Photosynthesis and drought: can we make metabolic connections from available data?

Carla Pinheiro; Maria Manuela Chaves

Photosynthesis is one of the key processes to be affected by water deficits, via decreased CO2 diffusion to the chloroplast and metabolic constraints. The relative impact of those limitations varies with the intensity of the stress, the occurrence (or not) of superimposed stresses, and the species we are dealing with. Total plant carbon uptake is further reduced due to the concomitant or even earlier inhibition of growth. Leaf carbohydrate status, altered directly by water deficits or indirectly (via decreased growth), acts as a metabolic signal although its role is not totally clear. Other relevant signals acting under water deficits comprise: abscisic acid (ABA), with an impact on stomatal aperture and the regulation at the transcription level of a large number of genes related to plant stress response; other hormones that act either concurrently (brassinosteroids, jasmonates, and salycilic acid) or antagonistically (auxin, cytokinin, or ethylene) with ABA; and redox control of the energy balance of photosynthetic cells deprived of CO2 by stomatal closure. In an attempt to systematize current knowledge on the complex network of interactions and regulation of photosynthesis in plants subjected to water deficits, a meta-analysis has been performed covering >450 papers published in the last 15 years. This analysis shows the interplay of sugars, reactive oxygen species (ROS), and hormones with photosynthetic responses to drought, involving many metabolic events. However, more significantly it highlights (i) how fragmented and often non-comparable the results are and (ii) how hard it is to relate molecular events to plant physiological status, namely photosynthetic activity, and to stress intensity. Indeed, the same data set usually does not integrate these different levels of analysis. Considering these limitations, it was hard to find a general trend, particularly concerning molecular responses to drought, with the exception of the genes ABI1 and ABI3. These genes, irrespective of the stress type (acute versus chronic) and intensity, show a similar response to water shortage in the two plant systems analysed (Arabidopsis and barley). Both are associated with ABA-mediated metabolic responses to stress and the regulation of stomatal aperture. Under drought, ABI1 transcription is up-regulated while ABI3 is usually down-regulated. Recently ABI3 has been hypothesized to be essential for successful drought recovery.


Journal of Chromatography A | 2008

Analysis of carbohydrates in Lupinus albus stems on imposition of water deficit, using porous graphitic carbon liquid chromatography-electrospray ionization mass spectrometry

Carla António; Carla Pinheiro; Maria Manuela Chaves; Cândido Pinto Ricardo; M.F. Ortuño; Jane Thomas-Oates

This work reports the development and application of a negative ion mode online LC-ESI-MS method for studying the effect of water deficit on the carbohydrate content of Lupinus albus stems, using a porous graphitic carbon (PGC) stationary phase and an ion trap mass spectrometer. Using this method, separation and detection of several water soluble carbohydrates, ranging from mono-, di-, and oligosaccharides (raffinose, stachyose, and verbascose) to sugar alcohols was achieved in approximately 10 min. This on-line PGC-LC-ESI-MS method shows good linearity with correlation coefficients R(2)>0.99, selectivity, short analysis time, and limits of detection (LOD) ranging from 0.4 to 9 pmol for sugars and 4-20 pmol for sugar alcohols. This PGC-LC-ESI-MS method is sensitive and allowed us to detect even small alterations in carbohydrate levels in L. albus stems that resulted from a mild/early water deficit (nmol g(-1)DW). This paper describes details of our method and its application to the quantitative analysis of water soluble underivatised carbohydrates extracted from L. albus stem tissues that have been subjected to early and severe water deficit conditions, followed by a rewatering period.


Journal of Biological Chemistry | 2003

A Biochemical and Molecular Characterization of LEP1, an Extensin Peroxidase from Lupin

Nicholas J. Price; Carla Pinheiro; Cláudio M. Soares; David A. Ashford; Cândido Pinto Ricardo; Phil A. Jackson

An analysis of apoplastic extensin cross-linking activity in vegetative organs of Lupinus albus indicated that leaves contained the highest specific activity. Assays of peroxidases fractionated from this material demonstrated that this activity could be largely attributed to a soluble and apoplastic 51-kDa peroxidase, denoted LEP1. Relative to other purified peroxidases, LEP1 demonstrates high extensin cross-linking activity and can be classified as an extensin peroxidase (EP). Optimal conditions for the in vitro oxidation of other phenolic substrates included 1.5–3.0 mm peroxide at pH 5.0. EP activity of LEP1 was low under these conditions but optimal and substantially higher with 100 μm peroxide and neutral pH, suggesting that physiological changes in pH and peroxide in muro could heavily influence the extensin cross-linking activity of LEP1 in vivo. Analysis of LEP1 glycans indicated 11–12 N-linked glycans, predominantly the heptasaccharide Man3XylFucGlcNAc2, but also larger structures showing substantial heterogeneity. Comparative assays with horseradish peroxidase isoform C and peanut peroxidases suggested the high level of glycosylation in LEP1 may be responsible for the high solubility of this EP in the apoplastic space. A full-length cDNA corresponding to LEP1 was cloned. Quantitative reverse transcriptase-PCR demonstrated LEP1 induction in apical portions of etiolated hypocotyls 30–60 min after exposure to white light, prior to the onset of growth inhibition. Comparative modeling of the translated sequence indicated an unusually unobstructed equatorial cleft across the substrate access channel, which might facilitate interaction with extensin and confer higher EP activity.


Planta | 2000

The Lupinus albus class-III chitinase gene, IF3, is constitutively expressed in vegetative organs and developing seeds

Ana Paula Regalado; Carla Pinheiro; Sheila Vidal; Inês Chaves; Cândido Pinto Ricardo; Claudina Rodrigues-Pousada

Abstract. A cDNA fragment encoding a Lupinus albus. L. class-III chitinase, IF3, was isolated, using a cDNA probe from Cucumis sativus L., by in-situ plaque hybridization from a cDNA library constructed in the Uni-ZAP XR vector, with mRNAs isolated from mature lupin leaves. The cDNA had a coding sequence of 293 amino acids including a 27-residue N-terminal signal peptide. A class-III chitinase gene was detected by Southern analysis in the L. albus genome. Western blotting experiments showed that the IF3 protein was constitutively present during seed development and in all the studied vegetative lupin organs (i.e., roots, hypocotyls and leaves) at two growth stages (7- and 20-d-old plants). Accumulation of both the IF3 mRNA and IF3 protein was triggered by salicylic acid treatment as well as by abiotic (UV-C light and wounding) and biotic stress conditions (Colletotrichum gloeosporioides infection). In necrotic leaves, IF3 chitinase mRNA was present at a higher level than that of another mRNA encoding a pathogenesis-related (PR) protein from L. albus (a PR-10) and that of the rRNAs. We suggest that one role of the IF3 chitinase could be in the defense of the plant against fungal infection, though our results do not exclude other functions for this protein.


Proteomics | 2009

Proteomic evaluation of wound-healing processes in potato (Solanum tuberosum L.) tuber tissue

Inês Chaves; Carla Pinheiro; Jorge Paiva; Sébastien Planchon; Kjell Sergeant; Jenny Renaut; José Graça; Gonçalo da Costa; Ana V. Coelho; Cândido Pinto Ricardo

Proteins from potato (Solanum tuberosum L.) tuber slices, related to the wound‐healing process, were separated by 2‐DE and identified by an MS analysis in MS and MS/MS mode. Slicing triggered differentiation processes that lead to changes in metabolism, activation of defence and cell‐wall reinforcement. Proteins related to storage, cell growth and division, cell structure, signal transduction, energy production, disease/defence mechanisms and secondary metabolism were detected. Image analysis of the 2‐DE gels revealed a time‐dependent change in the complexity of the polypeptide patterns. By microscopic observation the polyalyphatic domain of suberin was clearly visible by D4, indicating that a closing layer (primary suberisation) was formed by then. A PCA of the six sampling dates revealed two time phases, D0–D2 and D4–D8, with a border position between D2 and D4. Moreover, a PCA of differentially expressed proteins indicated the existence of a succession of proteomic events leading to wound‐periderm reconstruction. Some late‐expressed proteins (D6–D8), including a suberisation‐associated anionic peroxidase, have also been identified in the native periderm. Despite this, protein patterns of D8 slices and native periderm were still different, suggesting that the processes of wound‐periderm formation are extended in time and not fully equivalent. The information presented in this study gives clues for further work on wound healing‐periderm formation processes.


Journal of Experimental Botany | 2011

Initial water deficit effects on Lupinus albus photosynthetic performance, carbon metabolism, and hormonal balance: metabolic reorganization prior to early stress responses

Carla Pinheiro; Carla António; M.F. Ortuño; Petre I. Dobrev; Wolfram Hartung; Jane Thomas-Oates; Cândido Pinto Ricardo; Radomira Vankova; Maria Manuela Chaves; Julie Wilson

The early (2-4 d) effects of slowly imposed soil water deficit on Lupinus albus photosynthetic performance, carbon metabolism, and hormonal balance in different organs (leaf blade, stem stele, stem cortex, and root) were evaluated on 23-d-old plants (growth chamber assay). Our work shows that several metabolic adjustments occurred prior to alteration of the plant water status, implying that water deficit is perceived before the change in plant water status. The slow, progressive decline in soil water content started to be visible 3 d after withholding water (3 DAW). The earliest plant changes were associated with organ-specific metabolic responses (particularly in the leaves) and with leaf conductance and only later with plant water status and photosynthetic rate (4 DAW) or photosynthetic capacity (according to the Farquhar model; 6 DAW). Principal component analysis (PCA) of the physiological parameters, the carbohydrate and the hormone levels and their relative values, as well as leaf water-soluble metabolites full scan data (LC-MS/MS), showed separation of the different sampling dates. At 6 DAW classically described stress responses are observed, with plant water status, ABA level, and root hormonal balance contributing to the separation of these samples. Discrimination of earlier stress stages (3 and 4 DAW) is only achieved when the relative levels of indole-3-acetic acid (IAA), cytokinins (Cks), and carbon metabolism (glucose, sucrose, raffinose, and starch levels) are taken into account. Our working hypothesis is that, in addition to single responses (e.g. ABA increase), the combined alterations in hormone and carbohydrate levels play an important role in the stress response mechanism. Response to more advanced stress appears to be associated with a combination of cumulative changes, occurring in several plant organs. The carbohydrate and hormonal balance in the leaf (IAA to bioactive-Cks; soluble sugars to IAA and starch to IAA; relative abundances of the different soluble sugars) flag the initial responses to the slight decrease in soil water availability (10-15% decrease). Further alterations in sucrose to ABA and in raffinose to ABA relative values (in all organs) indicate that soil water availability continues to decrease. Such alterations when associated with changes in the root hormone balance indicate that the stress response is initiated. It is concluded that metabolic balance (e.g. IAA/bioactive Cks, carbohydrates/IAA, sucrose/ABA, raffinose/ABA, ABA/IAA) is relevant in triggering adjustment mechanisms.


Frontiers in Plant Science | 2015

The quest for tolerant varieties: the importance of integrating “omics” techniques to phenotyping

Michel Zivy; Stefanie Wienkoop; Jenny Renaut; Carla Pinheiro; Estelle Goulas; Sebastien Carpentier

The primary objective of crop breeding is to improve yield and/or harvest quality while minimizing inputs. Global climate change and the increase in world population are significant challenges for agriculture and call for further improvements to crops and the development of new tools for research. Significant progress has been made in the molecular and genetic analysis of model plants. However, is science generating false expectations? Are ‘omic techniques generating valuable information that can be translated into the field? The exploration of crop biodiversity and the correlation of cellular responses to stress tolerance at the plant level is currently a challenge. This viewpoint reviews concisely the problems one encounters when working on a crop and provides an outline of possible workflows when initiating cellular phenotyping via “-omic” techniques (transcriptomics, proteomics, metabolomics).


Journal of Experimental Botany | 2014

Comparison of good- and bad-quality cork: application of high-throughput sequencing of phellogenic tissue

Rita Teresa Teixeira; Ana Margarida Fortes; Carla Pinheiro; Helena Pereira

Cork is one of the most valuable non-wood forest products and plays an important role in Mediterranean economies. The production of high-quality cork is dependent on both genome and environment, posing constraints on the industry because an ever-growing amount of bad-quality cork (BQC) development has been observed. In order to identify genes responsible for production of cork of superior quality we performed a comparative analysis using the 454 pyrosequencing approach on phellogenic tissue of good- and bad-quality samples. The transcriptional profiling showed a high number of genes differentially expressed (8.48%) from which 78.8% displayed annotation. Genes more highly represented in BQC are involved in DNA synthesis, RNA processing, proteolysis, and transcription factors related to the abiotic stress response. Putative stomatal/lenticular-associated genes which may be responsible for the disadvantageous higher number of lenticular channels in BQC are also more highly represented. BQC also showed an elevated content of free phenolics. On the other hand, good-quality cork (GQC) can be distinguished by highly expressed genes encoding heat-shock proteins. Together the results provide valuable new information about the molecular events leading to cork formation and provide putative biomarkers associated with cork quality that can be useful in breeding programmes.


Frontiers in Plant Science | 2015

Proteomic analysis of apoplastic fluid of Coffea arabica leaves highlights novel biomarkers for resistance against Hemileia vastatrix

Leonor Guerra-Guimarães; Rita Estrela Rt Tenente; Carla Pinheiro; Inês Chaves; Maria do Céu Silva; Fernando Fc Cardoso; Sébastien Planchon; Danielle Ribeiro Db De Barros; Jenny Renaut; Candido Pinto Ricardo

A proteomic analysis of the apoplastic fluid (APF) of coffee leaves was conducted to investigate the cellular processes associated with incompatible (resistant) and compatible (susceptible) Coffea arabica-Hemileia vastatrix interactions, during the 24–96 hai period. The APF proteins were extracted by leaf vacuum infiltration and protein profiles were obtained by 2-DE. The comparative analysis of the gels revealed 210 polypeptide spots whose volume changed in abundance between samples (control, resistant and susceptible) during the 24–96 hai period. The proteins identified were involved mainly in protein degradation, cell wall metabolism and stress/defense responses, most of them being hydrolases (around 70%), particularly sugar hydrolases and peptidases/proteases. The changes in the APF proteome along the infection process revealed two distinct phases of defense responses, an initial/basal one (24–48 hai) and a late/specific one (72–96 hai). Compared to susceptibility, resistance was associated with a higher number of proteins, which was more evident in the late/specific phase. Proteins involved in the resistance response were mainly, glycohydrolases of the cell wall, serine proteases and pathogen related-like proteins (PR-proteins), suggesting that some of these proteins could be putative candidates for resistant markers of coffee to H. vastatrix. Antibodies were produced against chitinase, pectin methylesterase, serine carboxypeptidase, reticuline oxidase and subtilase and by an immunodetection assay it was observed an increase of these proteins in the resistant sample. With this methodology we have identified proteins that are candidate markers of resistance and that will be useful in coffee breeding programs to assist in the selection of cultivars with resistance to H. vastatrix.

Collaboration


Dive into the Carla Pinheiro's collaboration.

Top Co-Authors

Avatar

Cândido Pinto Ricardo

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jenny Renaut

University of Luxembourg

View shared research outputs
Top Co-Authors

Avatar

Carla António

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Inês Chaves

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

M.F. Ortuño

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Candido Pinto Ricardo

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Manuela Chaves

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Olfa Zarrouk

Spanish National Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge