Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carla Quintaneiro is active.

Publication


Featured researches published by Carla Quintaneiro.


Science of The Total Environment | 2015

Life history and biochemical effects of chlorantraniliprole on Chironomus riparius

Andreia C.M. Rodrigues; Carlos Gravato; Carla Quintaneiro; Oksana Golovko; Vladimír Žlábek; Carlos Barata; Amadeu M.V.M. Soares; João L.T. Pestana

The need to overcome pesticide resistance has led to the development of novel insecticides such as chlorantraniliprole (CAP), an anthranilic diamide. CAP disrupts calcium homeostasis in nerve and muscle cells and is used in several agricultural crops due to its potency and selectivity. However, chronic toxicity data for aquatic invertebrates are limited. Our objective was to evaluate the toxicity of CAP at different levels of biological organization using Chironomus riparius. Organismal endpoints (survival, larval growth and emergence), and 5 biomarkers associated with important physiological functions (acetylcholinesterase - AChE; catalase - CAT; glutathione-S-transferase - GST; total glutathione - TG; and lipid peroxidation - LPO) were investigated. Effects of CAP on cellular energy allocation (CEA) were also assessed. Acute tests revealed a 48 h LC50 for C. riparius of 77.5 μg/L and life-cycle tests revealed a chronic LOEC of 3.1 μg/L based on effects on C. riparius larval growth and emergence. C. riparius females exposed as larvae to low concentrations of CAP emerged at a smaller size which might also translate into effects on reproduction. Chironomid larvae were not under oxidative stress, since short exposures to CAP did not affect LPO levels, despite the significant inhibition of GST (0.6-9.6 μg/L) and CAT (9.6 μg/L). It seems that detoxification of reactive intermediates and ROS is still achieved due to glutathione consumption, since TG levels were significantly decreased in organisms exposed to CAP (0.6-9.6 μg/L). Moreover, it was observed that CEA was disturbed due to increased activity of the electron transport system (ETS), suggesting extra energy expenditure in larvae. These results show that environmental concentrations of CAP can impair the fitness of C. riparius natural populations and at the same time that chironomids, as for most insecticides, are suitable test organisms to evaluate the organismal and biochemical effects of anthranilic diamides.


Aquatic Toxicology | 2013

Characterization of cholinesterases in Chironomus riparius and the effects of three herbicides on chlorpyrifos toxicity.

Joanne Pérez; Marta S. Monteiro; Carla Quintaneiro; Amadeu M.V.M. Soares; Susana Loureiro

In this study, the toxicities of four pesticides (the herbicides atrazine, terbuthylazine, metolachlor and the insecticide chlorpyrifos) previously detected in the Alqueva reservoir/dam (south of Portugal) were evaluated individually and in binary combinations of the herbicides and the insecticide using fourth-instar larvae of the aquatic midge Chironomus riparius. Chlorpyrifos induced toxicity to midges in all the 48 h toxicity bioassays performed. The swimming behaviour of the larvae was impaired, with EC50 values ranging from 0.15 to 0.17 μg/L. However, neither s-triazine (atrazine and terbuthylazine) herbicides nor metolachlor alone at concentrations up to 200 μg/L caused significant toxicity to C. riparius. When combined with both s-triazine herbicides, chlorpyrifos toxicity was enhanced by approximately 2-fold when tested in a binary mixture experimental setup, at the 50% effective concentration levels. To evaluate how chlorpyrifos toxicity was being increased, the cholinesterases (ChE) were characterized biochemically using different substrates and selective inhibitors. The results obtained suggested that the main enzyme present in this species is acetylcholinesterase (AChE) and therefore it was assayed upon C. riparius exposures to all pesticides individually and as binary mixtures. Although atrazine and terbuthylazine are not effective inhibitors of AChE, the potentiation of chlorpyrifos toxicity by the two s-triazine herbicides was associated with a potentiation in the inhibition of AChE in midges; both s-triazine herbicides at 200 μg/L increased the inhibition of the AChE activity by 7 and 8-fold, respectively. A strong correlation was observed between swimming behaviour disturbances of larvae and the inhibition of the AChE activity. In contrast, metolachlor did not affect chlorpyrifos toxicity at any of the concentrations tested. Therefore, the herbicides atrazine and terbuthylazine can act as synergists in the presence of chlorpyrifos, increasing the toxicity and consequently underestimating risk based on single chemical levels.


Chemosphere | 2016

Are insect repellents toxic to freshwater insects? A case study using caddisflies exposed to DEET

Diana Campos; Carlos Gravato; Carla Quintaneiro; Olga Koba; Tomas Randak; Amadeu M.V.M. Soares; João L.T. Pestana

Stream ecosystems face ever-increasing pressures by the presence of emergent contaminants, such as, personal care products. N, N-diethyl-3-methylbenzamide (DEET) is a synthetic insect repellent that is being found in surface waters environments in concentrations up to 33.4 μg/L. Information concerning DEETs toxicity in the aquatic environment is still limited and focused only on its acute effects on model species. Our main objective was to assess the effects of DEET exposure to a caddisfly non-target species using sub-lethal endpoints. For that, we chose Sericostoma vittatum, an important shredder in Portuguese freshwaters that has been already used in different ecotoxicological assays. Besides acute tests, S. vittatum were exposed during 6 days to a gradient of DEET concentrations (8, 18 and 40.5 mg/L) to assess effects on feeding behaviour and biochemical responses, such as, lipid peroxidation levels (LPO), catalase and acetylcholinesterase (AChE) activities, and also assess effects on energy reserves and consumption. Acute tests revealed a 48 h-LC50 of 80.12 mg/L and DEET exposure caused feeding inhibition with a LOEC of 36.80 mg/L. Concerning the biochemical responses, DEET caused no effects in LPO nor on catalase activity. A non-significant decrease in AChE activity was observed. Regarding energetic reserves, exposure to DEET caused a significant reduction in S. vittatum carbohydrates levels. These results add important information for the risk assessment of insect repellents in the aquatic environment and suggest that reported environmental concentrations of DEET are not toxic to non-target freshwater insects.


Aquatic Toxicology | 2016

Responses of the aquatic midge Chironomus riparius to DEET exposure.

Diana Campos; Carlos Gravato; Carla Quintaneiro; Amadeu M.V.M. Soares; João L.T. Pestana

N,N-diethyl-3-methylbenzamide (DEET) is the active ingredient of many commercial insect repellents. Despite being detected worldwide in effluents, surface water and groundwater, there is still limited information on DEETs toxicity toward non-target aquatic invertebrates. Thus, our main objective was to assess the effects of DEET in the life cycle of Chironomus riparius and assess its biochemical effects. Laboratory assays showed that DEET reduced developmental rates (reduced larval growth, delayed emergence) of C. riparius larvae and also caused a decrease in the size of adult midges. Concerning the biochemical responses, a short exposure to DEET caused no effects in lipid peroxidation, despite the significant inhibition of catalase and glutathione-S-transferase activities and of total glutathione contents. Moreover, inhibition of acetylcholinesterase activity was also observed showing neurotoxic effects. Environmental risk assessment of insect repellents is needed. Our results showed moderate toxicity of DEET toward C. riparius, however, due to their mode of action, indirect ecological effects of DEET and of other insect repellents cannot be excluded and should be evaluated.


Science of The Total Environment | 2017

Endocrine and physiological effects of linuron and S-metolachlor in zebrafish developing embryos

Carla Quintaneiro; D. Patrício; Sara C. Novais; Amadeu M.V.M. Soares; Marta S. Monteiro

Evaluation of the effects of linuron and S-metolachlor on apical, biochemical and transcriptional endpoints in zebrafish (Danio rerio) early life stages was the main purpose of this work. Embryos were exposed for 96h to a range of concentrations of each herbicide to determine lethal and sub-lethal effects on apical (e.g. malformations, hatching) and biochemical parameters (cholinesterase, ChE; catalase, CAT; glutathione S-transferase, GST; lipid peroxidation, LPO and lactate dehydrogenase, LDH). To evaluate endocrine disruption effects, embryos were exposed during 96h to 0.88mg/L linuron and 9.66mg/L S-metolachlor, isolated or in binary mixture. Expression of a suite of genes involved in HPT, HPG and HPA-axis was then assessed. Highest concentration of linuron (5.0mg/L) decreased hatching rate to 5% and 70.0mg/L S-metolachlor completely inhibited hatching, about 100%. Both herbicides impaired development by inducing several malformations (100% in 5.0mg/L linuron and 70.0mg/L S-metolachlor). Linuron only affected GST and CAT at concentrations of 0.25 and 0.0025mg/L, respectively. S-metolachlor induced GST (to 256%), inhibited ChE (to 61%) and LDH (to 60%) and reduced LPO levels (to 63%). Linuron isolated treatment seems to have an estrogenic mode of action due to the observed induction of vtg1. Exposure to S-metolachlor seems to interfere with steroidogenesis and with HPT and HPA-axis, since it has inhibited cyp19a2, TSHβ and CRH gene expression. In addition to vtg1 induction and CRH inhibition, herbicide combination also induced sox9b that has a role in regulation of sexual development in zebrafish. This study pointed out adverse effects of linuron and S-metolachlor, namely impairment of neurotransmission and energy production, induction of steroidogenesis, and interference with HPT and HPA-axis. These results contributed to elucidate modes of action of linuron and S-metolachlor in zebrafish embryo model. Furthermore, gene expression patterns obtained are indicative of endocrine disruption action of these herbicides.


Ecotoxicology and Environmental Safety | 2015

Effects of the essential metals copper and zinc in two freshwater detritivores species: Biochemical approach.

Carla Quintaneiro; James F. Ranville; António Nogueira

The input of metals into freshwater ecosystems from natural and anthropogenic sources impairs water quality and can lead to biological alterations in organisms and plants, compromising the structure and the function of these ecosystems. Biochemical biomarkers may provide early detection of exposure to contaminants and indicate potential effects at higher levels of biological organisation. The effects of 48h exposures to copper and zinc on Atyaephyra desmarestii and Echinogammarus meridionalis were evaluated with a battery of biomarkers of oxidative stress and the determination of ingestion rates. The results showed different responses of biomarkers between species and each metal. Copper inhibited the enzymatic defence system of both species without signs of oxidative damage. Zinc induced the defence system in E. meriodionalis with no evidence of oxidative damage. However, in A. desmarestii exposed to zinc was observed oxidative damage. In addition, only zinc had significantly reduced the ingestion rate and just for E. meridionalis. The value of the integrated biomarkers response increased with concentration of both metals, which indicates that might be a valuable tool to interpretation of data as a whole, as different parameters have different weight according to type of exposure.


Environmental Toxicology and Chemistry | 2017

Exposure to chlorantraniliprole affects the energy metabolism of the caddisfly Sericostoma vittatum

Andreia C.M. Rodrigues; Carlos Gravato; Carla Quintaneiro; Maria D. Bordalo; Oksana Golovko; Vladimír Žlábek; Carlos Barata; Amadeu M.V.M. Soares; João L.T. Pestana

Caddisflies have been included in ecotoxicological studies because of their sensitivity and ecological relevance. The present study aimed to assess the sublethal effects of an anthranilic diamide insecticide, chlorantraniliprole (CAP), to Sericostoma vittatum. Used worldwide, CAP is a persistent compound that has been found in surface waters at concentrations from 0.1 μg/L to 9.7 μg/L. It targets the ryanodine receptors, and the present ecotoxicological assessment focused on biomarkers related to neurotransmission, biotransformation, oxidative stress damage, and endpoints related to energy processing (feeding, energy reserves, and cellular metabolism). Six days of exposure trials revealed that feeding activity was significantly decreased in S. vittatum larvae exposed to 0.9 μg/L CAP. Concomitantly, a reduction in cellular metabolism and a significant decrease in protein content were also observed in caddisfly larvae exposed to CAP, suggesting metabolic depression. The results show that sublethal concentrations of CAP can cause detrimental sublethal effects on S. vittatum total glutathione content at concentrations as low as 0.2 μg/L. Bioenergetics can be used to assess physiological effects of contaminants, and the present results show that exposure to low, environmentally relevant, concentrations of CAP alter energy acquisition and metabolism in nontarget aquatic insects with potential population level effects. Environ Toxicol Chem 2017;36:1584-1591.


Ecotoxicology and Environmental Safety | 2017

Toxicity of organic UV-filters to the aquatic midge Chironomus riparius

Diana Campos; Carlos Gravato; Carla Quintaneiro; Oksana Golovko; Vladimír Žlábek; Amadeu M.V.M. Soares; João L.T. Pestana

Despite the frequent detection of organic ultraviolet-filters (UV-filters) in freshwater sediments, there is a lack of ecotoxicological data undermining a correct risk assessment for these emerging contaminants. The present study assessed the effects of three of the most commonly used UV-filters (benzophenone-3 - BP3; 3-(4-methylbenzylidene)camphor - 4-MBC and octocrylene - OC) on Chironomus riparius life history and biochemical responses. Standard ecotoxicological assays confirmed that all compounds impaired growth of C. riparius larvae and induced developmental effects such as delayed emergence and a reduction of imagoes weight. Concerning the biochemical responses analysed no evidences of oxidative damage in lipids or neurotoxicity (tested assessing acetylcholinesterase activity) were observed for any of the tested compounds. However, 4-MBC exposure induced a decrease in catalase activity and an increase in glutathione-S-transferase activity at 14.13mg/Kg while OC exposure caused an increase in total glutathione levels at 0.23 and 18.23mg/Kg. Exposure to all UV-filters tested, increased energy consumption on C. riparius with significant differences above 1.00mg/Kg for BP3, 0.09mg/Kg for 4-MBC and 2.13mg/Kg for OC. These results suggest that environmental relevant concentrations of UV-filters can cause deleterious effects to aquatic benthic species, such as C. riparius, and call for further research concerning effects of organic UV-filters on natural invertebrate communities and ecosystem functioning.


The Journal of Experimental Biology | 2018

Kleptoplasts photoacclimation state modulates the photobehaviour of the solar-powered sea slug Elysia viridis

Paulo Cartaxana; Luca Morelli; Carla Quintaneiro; Gonçalo Calado; Ricardo Calado; Sónia Cruz

ABSTRACT Some sacoglossan sea slugs incorporate intracellular functional algal chloroplasts (kleptoplasty) for periods ranging from a few days to several months. Whether this association modulates the photobehaviour of solar-powered sea slugs is unknown. In this study, the long-term kleptoplast retention species Elysia viridis showed avoidance of dark independently of light acclimation state. In contrast, Placida dendritica, which shows non-functional retention of kleptoplasts, showed no preference over dark, low or high light. High light-acclimated (HLac) E. viridis showed a higher preference for high light than low light-acclimated (LLac) conspecifics. The position of the lateral folds (parapodia) was modulated by irradiance, with increasing light levels leading to a closure of parapodia and protection of kleptoplasts from high light exposure. Furthermore, closure of parapodia occurred at higher irradiance in HLac E. viridis. Our results strongly indicate that kleptoplast photoacclimation state modulates the photobehaviour of the solar-powered sea slug E. viridis. Summary: Light preference and the position of the lateral folds (parapodia) of the solar-powered sea slug Elysia viridis are modulated by the light history of chloroplasts acquired from macroalgae.


Environmental Toxicology and Chemistry | 2016

Physiological effects of essential metals on two detritivores: Atyaephyra desmarestii (Millet) and Echinogammarus meridionalis (Pinkster)

Carla Quintaneiro; James F. Ranville; António Nogueira

Freshwater ecosystems are essential for humans; however, input of several types of contamination has led to the degradation of these ecosystems. Thus, it is urgent to assess their health to allow actions for prevention and remediation. The level of trace metals can be enhanced by natural or anthropogenic sources. Essential metals, such as copper and zinc, become toxic when present in the environment above threshold concentrations. To evaluate the physiological effects of these 2 essential metals for 2 freshwater detritivores, the shrimp Atyaephyra desmarestii and the amphipod Echinogammarus meridionalis, acute tests were performed. Forty-eight hour median lethal concentration (LC50) values were estimated for these species using static bioassays with copper and zinc. Sublethal assays for both metals with several phases were also done to evaluate the effects on feeding behavior. The LC50 values of copper for the shrimp A. desmarestii and amphipod E. meridionalis were 0.128 mg/L and 0.050 mg/L and those of zinc were 7.951 mg/L and 11.860 mg/L, respectively. The results indicated that copper is more toxic to both species. Only E. meridionalis showed deleterious effects of copper on feeding rate. Zinc showed some tendency for feeding inhibition in both species. Environ Toxicol Chem 2016;35:1442-1448.

Collaboration


Dive into the Carla Quintaneiro's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carlos Barata

Spanish National Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge