Carla S. Möller-Levet
University of Surrey
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Carla S. Möller-Levet.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Carla S. Möller-Levet; Simon N. Archer; Giselda Bucca; Emma Laing; Ana Slak; Renata Kabiljo; June C. Lo; Nayantara Santhi; Malcolm von Schantz; Colin P. Smith; Derk-Jan Dijk
Significance Insufficient sleep and circadian rhythm disruption are associated with negative health outcomes, but the mechanisms involved remain largely unexplored. We show that one wk of insufficient sleep alters gene expression in human blood cells, reduces the amplitude of circadian rhythms in gene expression, and intensifies the effects of subsequent acute total sleep loss on gene expression. The affected genes are involved in chromatin remodeling, regulation of gene expression, and immune and stress responses. The data imply molecular mechanisms mediating the effects of sleep loss on health and highlight the interrelationships between sleep homeostasis, circadian rhythmicity, and metabolism. Insufficient sleep and circadian rhythm disruption are associated with negative health outcomes, including obesity, cardiovascular disease, and cognitive impairment, but the mechanisms involved remain largely unexplored. Twenty-six participants were exposed to 1 wk of insufficient sleep (sleep-restriction condition 5.70 h, SEM = 0.03 sleep per 24 h) and 1 wk of sufficient sleep (control condition 8.50 h sleep, SEM = 0.11). Immediately following each condition, 10 whole-blood RNA samples were collected from each participant, while controlling for the effects of light, activity, and food, during a period of total sleep deprivation. Transcriptome analysis revealed that 711 genes were up- or down-regulated by insufficient sleep. Insufficient sleep also reduced the number of genes with a circadian expression profile from 1,855 to 1,481, reduced the circadian amplitude of these genes, and led to an increase in the number of genes that responded to subsequent total sleep deprivation from 122 to 856. Genes affected by insufficient sleep were associated with circadian rhythms (PER1, PER2, PER3, CRY2, CLOCK, NR1D1, NR1D2, RORA, DEC1, CSNK1E), sleep homeostasis (IL6, STAT3, KCNV2, CAMK2D), oxidative stress (PRDX2, PRDX5), and metabolism (SLC2A3, SLC2A5, GHRL, ABCA1). Biological processes affected included chromatin modification, gene-expression regulation, macromolecular metabolism, and inflammatory, immune and stress responses. Thus, insufficient sleep affects the human blood transcriptome, disrupts its circadian regulation, and intensifies the effects of acute total sleep deprivation. The identified biological processes may be involved with the negative effects of sleep loss on health, and highlight the interrelatedness of sleep homeostasis, circadian rhythmicity, and metabolism.
Proceedings of the National Academy of Sciences of the United States of America | 2014
Simon N. Archer; Emma Laing; Carla S. Möller-Levet; Daan R. van der Veen; Giselda Bucca; Alpar S. Lazar; Nayantara Santhi; Ana Slak; Renata Kabiljo; Malcolm von Schantz; Colin P. Smith; Derk-Jan Dijk
Significance Disruption of the timing of the sleep–wake cycle and circadian rhythms, such as occurs during jet lag and shift work, leads to disordered physiological rhythms, but to what extent the molecular elements of circadian rhythm generation are affected is not known. Here, we show that delaying sleep by 4 h for 3 consecutive days leads to a sixfold reduction of circadian transcripts in the human blood transcriptome to just 1%, whereas, at the same time, the centrally driven circadian rhythm of melatonin is not affected. Genes and processes affected included those at the core of circadian rhythm generation and gene expression. The data have implications for understanding the negative health outcomes of disruption of the sleep–wake cycle. Circadian organization of the mammalian transcriptome is achieved by rhythmic recruitment of key modifiers of chromatin structure and transcriptional and translational processes. These rhythmic processes, together with posttranslational modification, constitute circadian oscillators in the brain and peripheral tissues, which drive rhythms in physiology and behavior, including the sleep–wake cycle. In humans, sleep is normally timed to occur during the biological night, when body temperature is low and melatonin is synthesized. Desynchrony of sleep–wake timing and other circadian rhythms, such as occurs in shift work and jet lag, is associated with disruption of rhythmicity in physiology and endocrinology. However, to what extent mistimed sleep affects the molecular regulators of circadian rhythmicity remains to be established. Here, we show that mistimed sleep leads to a reduction of rhythmic transcripts in the human blood transcriptome from 6.4% at baseline to 1.0% during forced desynchrony of sleep and centrally driven circadian rhythms. Transcripts affected are key regulators of gene expression, including those associated with chromatin modification (methylases and acetylases), transcription (RNA polymerase II), translation (ribosomal proteins, initiation, and elongation factors), temperature-regulated transcription (cold inducible RNA-binding proteins), and core clock genes including CLOCK and ARNTL (BMAL1). We also estimated the separate contribution of sleep and circadian rhythmicity and found that the sleep–wake cycle coordinates the timing of transcription and translation in particular. The data show that mistimed sleep affects molecular processes at the core of circadian rhythm generation and imply that appropriate timing of sleep contributes significantly to the overall temporal organization of the human transcriptome.
International Journal of Cancer | 2016
Zoë L Kelly; Carla S. Möller-Levet; Sophie E. McGrath; Simon Butler-Manuel; Thumuluru Kavitha Madhuri; Hardev Pandha; Richard Morgan; Agnieszka Michael
HOX genes are vital for all aspects of mammalian growth and differentiation, and their dysregulated expression is related to ovarian carcinogenesis. The aim of the current study was to establish the prognostic value of HOX dysregulation as well as its role in platinum resistance. The potential to target HOX proteins through the HOX/PBX interaction was also explored in the context of platinum resistance. HOX gene expression was determined in ovarian cancer cell lines and primary EOCs by QPCR, and compared to expression in normal ovarian epithelium and fallopian tube tissue samples. Statistical analysis included one‐way ANOVA and t‐tests, using statistical software R and GraphPad. The analysis identified 36 of the 39 HOX genes as being overexpressed in high grade serous EOC compared to normal tissue. We detected a molecular HOX gene‐signature that predicted poor outcome. Overexpression of HOXB4 and HOXB9 was identified in high grade serous cell lines after platinum resistance developed. Targeting the HOX/PBX dimer with the HXR9 peptide enhanced the cytotoxicity of cisplatin in platinum‐resistant ovarian cancer. In conclusion, this study has shown the HOX genes are highly dysregulated in ovarian cancer with high expression of HOXA13, B6, C13, D1 and D13 being predictive of poor clinical outcome. Targeting the HOX/PBX dimer in platinum–resistant cancer represents a potentially new therapeutic option that should be further developed and tested in clinical trials.
BioEssays | 2015
Emma Laing; Jonathan D. Johnston; Carla S. Möller-Levet; Giselda Bucca; Colin P. Smith; Derk-Jan Dijk; Simon N. Archer
The power of the application of bioinformatics across multiple publicly available transcriptomic data sets was explored. Using 19 human and mouse circadian transcriptomic data sets, we found that NR1D1 and NR1D2 which encode heme‐responsive nuclear receptors are the most rhythmic transcripts across sleep conditions and tissues suggesting that they are at the core of circadian rhythm generation. Analyzes of human transcriptomic data show that a core set of transcripts related to processes including immune function, glucocorticoid signalling, and lipid metabolism is rhythmically expressed independently of the sleep‐wake cycle. We also identify key transcripts associated with transcription and translation that are disrupted by sleep manipulations, and through network analysis identify putative mechanisms underlying the adverse health outcomes associated with sleep disruption, such as diabetes and cancer. Comparative bioinformatics applied to existing and future data sets will be a powerful tool for the identification of core circadian‐ and sleep‐dependent molecules.
eLife | 2017
Emma Laing; Carla S. Möller-Levet; Norman Poh; Nayantara Santhi; Simon N. Archer; Derk-Jan Dijk
Diagnosis and treatment of circadian rhythm sleep-wake disorders both require assessment of circadian phase of the brain’s circadian pacemaker. The gold-standard univariate method is based on collection of a 24-hr time series of plasma melatonin, a suprachiasmatic nucleus-driven pineal hormone. We developed and validated a multivariate whole-blood mRNA-based predictor of melatonin phase which requires few samples. Transcriptome data were collected under normal, sleep-deprivation and abnormal sleep-timing conditions to assess robustness of the predictor. Partial least square regression (PLSR), applied to the transcriptome, identified a set of 100 biomarkers primarily related to glucocorticoid signaling and immune function. Validation showed that PLSR-based predictors outperform published blood-derived circadian phase predictors. When given one sample as input, the R2 of predicted vs observed phase was 0.74, whereas for two samples taken 12 hr apart, R2 was 0.90. This blood transcriptome-based model enables assessment of circadian phase from a few samples. DOI: http://dx.doi.org/10.7554/eLife.20214.001
Nucleic Acids Research | 2018
Giselda Bucca; Radhika Pothi; Andrew Hesketh; Carla S. Möller-Levet; David A. Hodgson; Emma Laing; Graham R. Stewart; Colin P. Smith
Abstract Stress-induced adaptations require multiple levels of regulation in all organisms to repair cellular damage. In the present study we evaluated the genome-wide transcriptional and translational changes following heat stress exposure in the soil-dwelling model actinomycete bacterium, Streptomyces coelicolor. The combined analysis revealed an unprecedented level of translational control of gene expression, deduced through polysome profiling, in addition to transcriptional changes. Our data show little correlation between the transcriptome and ‘translatome’; while an obvious downward trend in genome wide transcription was observed, polysome associated transcripts following heat-shock showed an opposite upward trend. A handful of key protein players, including the major molecular chaperones and proteases were highly induced at both the transcriptional and translational level following heat-shock, a phenomenon known as ‘potentiation’. Many other transcripts encoding cold-shock proteins, ABC-transporter systems, multiple transcription factors were more highly polysome-associated following heat stress; interestingly, these protein families were not induced at the transcriptional level and therefore were not previously identified as part of the stress response. Thus, stress coping mechanisms at the level of gene expression in this bacterium go well beyond the induction of a relatively small number of molecular chaperones and proteases in order to ensure cellular survival at non-physiological temperatures.
Molecular Therapy - Oncolytics | 2018
Nicola E. Annels; Mehreen Arif; Guy Simpson; M Denyer; Carla S. Möller-Levet; David Mansfield; Rachel E. Butler; Darren R. Shafren; Gough G. Au; Margaret A. Knowles; Kevin J. Harrington; Richard Vile; Alan Melcher; Hardev Pandha
As a clinical setting in which local live biological therapy is already well established, non-muscle invasive bladder cancer (NMIBC) presents intriguing opportunities for oncolytic virotherapy. Coxsackievirus A21 (CVA21) is a novel intercellular adhesion molecule-1 (ICAM-1)-targeted immunotherapeutic virus. This study investigated CVA21-induced cytotoxicity in a panel of human bladder cancer cell lines, revealing a range of sensitivities largely correlating with expression of the viral receptor ICAM-1. CVA21 in combination with low doses of mitomycin-C enhanced CVA21 viral replication and oncolysis by increasing surface expression levels of ICAM-1. This was further confirmed using 300-μm precision slices of NMIBC where levels of virus protein expression and induction of apoptosis were enhanced with prior exposure to mitomycin-C. Given the importance of the immunogenicity of dying cancer cells for triggering tumor-specific responses and long-term therapeutic success, the ability of CVA21 to induce immunogenic cell death was investigated. CVA21 induced immunogenic apoptosis in bladder cancer cell lines, as evidenced by expression of the immunogenic cell death (ICD) determinant calreticulin, and HMGB-1 release and the ability to reject MB49 tumors in syngeneic mice after vaccination with MB49 cells undergoing CVA21 induced ICD. Such CVA21 immunotherapy could offer a potentially less toxic, more effective option for the treatment of bladder cancer.
bioRxiv | 2018
Richard A Lewis; Abdul Wahab; Giselda Bucca; Emma Laing; Carla S. Möller-Levet; Colin P. Smith
The AbsA1-AbsA2 two component signalling system of Streptomyces coelicolor has long been known to exert a powerful negative influence on the production of the antibiotics actinorhodin, undecylprodiginine and the Calcium-Dependent Antibiotic (CDA). Here we report the analysis of a ΔabsA2 deletion strain, which exhibits the classic precocious antibiotic hyper-production phenotype, and its complementation by an N-terminal triple-FLAG-tagged version of AbsA2. The complemented and non-complemented ΔabsA2 mutant strains were used in large-scale microarray-based time-course experiments to investigate the effect of deleting absA2 on gene expression and to identify the in vivo AbsA2 DNA-binding target sites using ChIP-on chip. We show that in addition to binding to the promoter regions of redZ and actII-orfIV AbsA2 binds to several previously unidentified sites within the cda biosynthetic gene cluster within and/or upstream of SCO3215 - SCO3216, SCO3217, SCO3229 - SCO3230, and SCO3226, and we relate the pattern of AbsA2 binding to the results of the transcriptomic study and antibiotic phenotypic assays. Interestingly, dual ‘biphasic’ ChIP peaks were observed with AbsA2 binding across the regulatory genes actII-orfIV and redZ and the absA2 gene itself, while more conventional single promoter-proximal peaks were seen at the CDA biosynthetic genes suggesting a different mechanism of regulation of the former loci. Taken together the results shed light on the complex mechanism of regulation of antibiotic biosynthesis in Streptomyces coelicolor and the important role of AbsA2 in controlling the expression of three antibiotic biosynthetic gene clusters.
bioRxiv | 2018
Kathleen Pheasant; Carla S. Möller-Levet; Juliet Jones; Daniel P. Depledge; Judith Breuer; Gillian Elliott
HSV1 encodes an endoribonuclease termed virion host shutoff (vhs) that is produced late in infection and packaged into virions. Paradoxically, vhs is active against not only host but also virus transcripts, and is involved in host shutoff and the temporal expression of the virus transcriptome. Two other virus proteins - VP22 and VP16 – are proposed to regulate vhs to prevent uncontrolled and lethal mRNA degradation but their mechanism of action is unknown. We have performed dual transcriptomic analysis and single-cell mRNA FISH of human fibroblasts, a cell type where in the absence of VP22, HSV1 infection results in extreme translational shutoff. In Wt infection, host mRNAs exhibited a wide range of susceptibility to vhs ranging from resistance to 1000-fold reduction, a variation that was independent of their relative abundance or transcription rate. However, vhs endoribonuclease activity was not found to be overactive against any of the cell transcriptome in Δ22-infected cells but rather was delayed, while its activity against the virus transcriptome and in particular late mRNA was minimally enhanced. Intriguingly, immediate-early and early transcripts exhibited vhs-dependent nuclear retention later in Wt infection but late transcripts were cytoplasmic. However, in the absence of VP22, not only early but also late transcripts were retained in the nucleus, a characteristic that extended to cellular transcripts that were not efficiently degraded by vhs. Moreover, the ability of VP22 to bind VP16 enhanced but was not fundamental to the rescue of vhs-induced nuclear retention of late transcripts. Hence, translational shutoff in HSV1 infection is primarily a result of vhs-induced nuclear retention and not degradation of infected cell mRNA. We have therefore revealed a new mechanism whereby vhs and its co-factors including VP22 elicit a temporal and spatial regulation of the infected cell transcriptome, thus co-ordinating efficient late protein production. Author Summary Herpesviruses are large DNA viruses that replicate in the nucleus and express their genes by exploiting host cell mRNA biogenesis mechanisms including transcription, nuclear export, translation and turnover. As such, these viruses express multiple factors that enable the appropriation of cellular pathways for optimal virus production, and work in concert to shut off host gene expression and to overexpress virus genes in a well-described cascade that occurs in a temporal pattern of immediate-early, early and late proteins. We have analysed global and single cell changes in the host and virus transcriptome to uncover a novel mechanism by which the viral endoribonuclease, termed vhs, turns off early virus gene expression. This is achieved through the vhs-induced nuclear retention of the entire infected cell transcriptome at the onset of late gene expression. To enable the switch from early to late protein production the virus then requires a second factor called VP22 to specifically inhibit the nuclear retention of late transcripts allowing their translation in the cytoplasm. In this way, HSV1 elicits a temporal and spatial regulation of the infected cell transcriptome to co-ordinate efficient late protein production, a process that may be relevant to herpesviruses in general.
Sleep | 2018
Emma Laing; Carla S. Möller-Levet; Derk-Jan Dijk; Simon N. Archer
Abstract Acute and chronic insufficient sleep are associated with adverse health outcomes and risk of accidents. There is therefore a need for biomarkers to monitor sleep debt status. None are currently available. We applied elastic net and ridge regression to transcriptome samples collected in 36 healthy young adults during acute total sleep deprivation and following 1 week of either chronic insufficient (<6 hr) or sufficient sleep (~8.6 hr) to identify panels of mRNA biomarkers of sleep debt status. The size of identified panels ranged from 9 to 74 biomarkers. Panel performance, assessed by leave-one-subject-out cross-validation and independent validation, varied between sleep debt conditions. Using between-subject assessments based on one blood sample, the accuracy of classifying “acute sleep loss” was 92%, but only 57% for classifying “chronic sleep insufficiency.” A reasonable accuracy for classifying “chronic sleep insufficiency” could only be achieved by a within-subject comparison of blood samples. Biomarkers for sleep debt status showed little overlap with previously identified biomarkers for circadian phase. Biomarkers for acute and chronic sleep loss also showed little overlap but were associated with common functions related to the cellular stress response, such as heat shock protein activity, the unfolded protein response, protein ubiquitination and endoplasmic reticulum-associated protein degradation, and apoptosis. This characteristic response of whole blood to sleep loss can further aid our understanding of how sleep insufficiencies negatively affect health. Further development of these novel biomarkers for research and clinical practice requires validation in other protocols and age groups.