Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carles Corbella is active.

Publication


Featured researches published by Carles Corbella.


Review of Scientific Instruments | 2013

Particle beam experiments for the analysis of reactive sputtering processes in metals and polymer surfaces

Carles Corbella; Simon Grosse-Kreul; Oliver Kreiter; Teresa de los Arcos; Jan Benedikt; Achim von Keudell

A beam experiment is presented to study heterogeneous reactions relevant to plasma-surface interactions in reactive sputtering applications. Atom and ion sources are focused onto the sample to expose it to quantified beams of oxygen, nitrogen, hydrogen, noble gas ions, and metal vapor. The heterogeneous surface processes are monitored in situ by means of a quartz crystal microbalance and Fourier transform infrared spectroscopy. Two examples illustrate the capabilities of the particle beam setup: oxidation and nitriding of aluminum as a model of target poisoning during reactive magnetron sputtering, and plasma pre-treatment of polymers (PET, PP).


Journal of Physics D | 2016

Revising secondary electron yields of ion-sputtered metal oxides

Carles Corbella; Adrian Marcak; Teresa de los Arcos; Achim von Keudell

The emission of secondary electrons (SE) during sputtering of Al and Ti foils by argon ions in an oxygen background has been measured in a particle beam reactor equipped with a SE-collector. This experiment mimics the process of reactive magnetron sputtering. Quantified beams of argon ions with energies between 500 eV and 2000 eV were employed, while simultaneously molecular oxygen fluxes impinged on the surface and caused oxidation. The measured secondary electron emission coefficients (γ) ranged from approximately 0.1 (for clean aluminium and titanium) to 1.2 and 0.6 (in the case of aluminium oxide and titanium oxide, respectively). The increase of γ is compared to SE measurements based on the modelling of magnetron plasmas. Moreover, the energy distributions of the emitted SE have been measured by varying the retarding potential of the SE-collector, which allows the monitoring of the oxidation state from the position of the Auger peaks. The origin of the observed SE yields based on the emission of low- and high-energy electrons generated on the oxide surface is discussed.


Journal of Applied Physics | 2013

Ion-induced oxidation of aluminum during reactive magnetron sputtering

Oliver Kreiter; Simon Grosse-Kreul; Carles Corbella; Achim von Keudell

Particle beam experiments were conducted in an ultra-high-vacuum vessel to mimic target poisoning during reactive magnetron sputtering of aluminum. Aluminum targets were exposed to quantified beams of argon ions, oxygen atoms and molecules, and aluminum vapour. The growth and etch rates were measured in situ by means of an Al-coated quartz crystal microbalance. The chemical state of the target surface was monitored in-situ by real-time Fourier transform infrared spectroscopy. The surface processes were modelled through a set of balance equations providing sputter yields and sticking coefficients. The results indicate that the oxygen uptake of the aluminum surface is enhanced by a factor 1 to 2 by knock-on implantation and that the deposition of aluminum is not affected by the oxidation state of the surface.


Review of Scientific Instruments | 2015

Note: Ion-induced secondary electron emission from oxidized metal surfaces measured in a particle beam reactor

Adrian Marcak; Carles Corbella; Teresa de los Arcos; Achim von Keudell

The secondary electron emission of metals induced by slow ions is characterized in a beam chamber by means of two coaxial semi-cylindrical electrodes with different apertures. The voltages of the outer electrode (screening), inner electrode (collector), and sample holder (target) were set independently in order to measure the effective yield of potential and kinetic electron emissions during ion bombardment. Aluminum samples were exposed to quantified beams of argon ions up to 2000 eV and to oxygen atoms and molecules in order to mimic the plasma-surface interactions on metallic targets during reactive sputtering. The variation of electron emission yield was correlated to the ion energy and to the oxidation state of Al surfaces. This system provides reliable measurements of the electron yields in real time and is of great utility to explore the fundamental surface processes during target poisoning occurring in reactive magnetron sputtering applications.


Journal of Vacuum Science and Technology | 2017

Review Article: Unraveling synergistic effects in plasma-surface processes by means of beam experiments

Achim von Keudell; Carles Corbella

The interaction of plasmas with surfaces is dominated by synergistic effects between incident ions and radicals. Film growth is accelerated by the ions, providing adsorption sites for incoming radicals. Chemical etching is accelerated by incident ions when chemical etching products are removed from the surface by ion sputtering. The latter is the essence of anisotropic etching in microelectronics, as elucidated by the seminal paper of Coburn and Winters [J. Appl. Phys. 50, 3189 (1979)]. However, ion-radical-synergisms play also an important role in a multitude of other systems, which are described in this article: (1) hydrocarbon thin film growth from methyl radicals and hydrogen atoms; (2) hydrocarbon thin film etching by ions and reactive neutrals; (3) plasma inactivation of bacteria; (4) plasma treatment of polymers; and (5) oxidation mechanisms during reactive magnetron sputtering of metal targets. All these mechanisms are unraveled by using a particle beam experiment to mimic the plasma–surface interface with the advantage of being able to control the species fluxes independently. It clearly shows that the mechanisms in action that had been described by Coburn and Winters [J. Appl. Phys. 50, 3189 (1979)] are ubiquitous.


Journal of Applied Physics | 2015

Elementary surface processes during reactive magnetron sputtering of chromium

Sascha Monje; Carles Corbella; Achim von Keudell

The elementary surface processes occurring on chromium targets exposed to reactive plasmas have been mimicked in beam experiments by using quantified fluxes of Ar ions (400–800 eV) and oxygen atoms and molecules. For this, quartz crystal microbalances were previously coated with Cr thin films by means of high-power pulsed magnetron sputtering. The measured growth and etching rates were fitted by flux balance equations, which provided sputter yields of around 0.05 for the compound phase and a sticking coefficient of O2 of 0.38 on the bare Cr surface. Further fitted parameters were the oxygen implantation efficiency and the density of oxidation sites at the surface. The increase in site density with a factor 4 at early phases of reactive sputtering is identified as a relevant mechanism of Cr oxidation. This ion-enhanced oxygen uptake can be attributed to Cr surface roughening and knock-on implantation of oxygen atoms deeper into the target. This work, besides providing fundamental data to control oxidation ...


Journal of Physics D | 2013

Target implantation and redeposition processes during high-power impulse magnetron sputtering of aluminum

Andreas Will; Teresa de los Arcos; Carles Corbella; Ante Hecimovic; Patrick D Machura; Jörg Winter; Achim von Keudell

The processes of argon retention by the target and redeposition of target material were investigated by x-ray photoelectron spectroscopy as a function of radial position for different plasma conditions in high-power impulse magnetron sputtering of aluminum targets. Significant differences in Ar radial concentration profiles were observed for different discharge conditions. Inside the racetrack area, Ar ion flux-dominated implantation is compensated by radiation-enhanced diffusion loss terms. Outside the racetrack, the role of ion implantation is diminished, and Ar retention by the target may stem from a balance between gettering by redeposited Al and ion-induced Ar desorption.


Journal of Vacuum Science and Technology | 2017

Electric potential screening on metal targets submitted to reactive sputtering

Carles Corbella; Adrian Marcak; Achim von Keudell; Teresa de los Arcos

A very thin oxide layer is formed on top of metal surfaces that are submitted to reactive magnetron sputtering in an oxygen atmosphere. Having a few atomic monolayers thickness (1–5 nm), this oxide top layer shows properties of an electric insulator that retards the flux of incident ions. Here, the authors show that this layer can be modeled as a parallel combination of capacitance and resistance. The basic sputtering processes on the oxide layer have been mimicked by means of particle beam experiments in an ultra-high-vacuum reactor. Hence, quantified beams of argon ions and oxygen molecules have been sent to aluminum, chromium, titanium, and tantalum targets. The formation and characteristics of the oxide top layer have been monitored in situ by means of an electrostatic collector and quartz crystal microbalance. The charge build-up at the oxide layer interfaces generates a screening potential of the order of 1–10 V, which shows linear correlation with the total current through the target. The secondary...


Journal of Applied Physics | 2017

Investigation of plasma spokes in reactive high power impulse magnetron sputtering discharge

Ante Hecimovic; Carles Corbella; C Maszl; W Breilmann; A von Keudell

Spokes, localised ionisation zones, are commonly observed in magnetron sputtering plasmas, appearing either with a triangular shape or with a diffuse shape, exhibiting self-organisation patterns. In this paper, we investigate the spoke properties (shape and emission) in a high power impulse magnetron sputtering (HiPIMS) discharge when reactive gas (N2 or O2) is added to the Ar gas, for three target materials; Al, Cr, and Ti. Peak discharge current and total pressure were kept constant, and the discharge voltage and mass flow ratios of Ar and the reactive gas were adjusted. The variation of the discharge voltage is used as an indication of a change of the secondary electron yield. The optical emission spectroscopy data demonstrate that by addition of reactive gas, the HiPIMS plasma exhibits a transition from a metal dominated plasma to the plasma dominated by Ar ions and, at high reactive gas partial pressures, to the plasma dominated by reactive gas ions. For all investigated materials, the spoke shape changed to the diffuse spoke shape in the poisoned mode. The change from the metal to the reactive gas dominated plasma and increase in the secondary electron production observed as the decrease of the discharge voltage corroborate our model of the spoke, where the diffuse spoke appears when the plasma is dominated by species capable of generating secondary electrons from the target. Behaviour of the discharge voltage and maximum plasma emission is strongly dependant on the target/reactive gas combination and does not fully match the behaviour observed in DC magnetron sputtering.Spokes, localised ionisation zones, are commonly observed in magnetron sputtering plasmas, appearing either with a triangular shape or with a diffuse shape, exhibiting self-organisation patterns. In this paper, we investigate the spoke properties (shape and emission) in a high power impulse magnetron sputtering (HiPIMS) discharge when reactive gas (N2 or O2) is added to the Ar gas, for three target materials; Al, Cr, and Ti. Peak discharge current and total pressure were kept constant, and the discharge voltage and mass flow ratios of Ar and the reactive gas were adjusted. The variation of the discharge voltage is used as an indication of a change of the secondary electron yield. The optical emission spectroscopy data demonstrate that by addition of reactive gas, the HiPIMS plasma exhibits a transition from a metal dominated plasma to the plasma dominated by Ar ions and, at high reac...


Journal of Applied Physics | 2017

Composite targets in HiPIMS plasmas: Correlation of in-vacuum XPS characterization and optical plasma diagnostics

Vincent Layes; Sascha Monje; Carles Corbella; Volker Schulz-von der Gathen; Achim von Keudell; Teresa de los Arcos

In-vacuum characterization of magnetron targets after High Power Impulse Magnetron Sputtering (HiPIMS) has been performed by X-ray photoelectron spectroscopy (XPS). Al-Cr composite targets (circular, 50 mm diameter) mounted in two different geometries were investigated: an Al target with a small Cr disk embedded at the racetrack position and a Cr target with a small Al disk embedded at the racetrack position. The HiPIMS discharge and the target surface composition were characterized in parallel for low, intermediate, and high power conditions, thus covering both the Ar-dominated and the metal-dominated HiPIMS regimes. The HiPIMS plasma was investigated using optical emission spectroscopy and fast imaging using a CCD camera; the spatially resolved XPS surface characterization was performed after in-vacuum transfer of the magnetron target to the XPS chamber. This parallel evaluation showed that (i) target redeposition of sputtered species was markedly more effective for Cr atoms than for Al atoms; (ii) oxid...

Collaboration


Dive into the Carles Corbella's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge