Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carlheinz Röcker is active.

Publication


Featured researches published by Carlheinz Röcker.


Proceedings of the National Academy of Sciences of the United States of America | 2002

A far-red fluorescent protein with fast maturation and reduced oligomerization tendency from Entacmaea quadricolor (Anthozoa, Actinaria)

Jörg Wiedenmann; Andreas D. Schenk; Carlheinz Röcker; Andreas Girod; Klaus-Dieter Spindler; G. Ulrich Nienhaus

We performed the biochemical and biophysical characterization of a red fluorescent protein, eqFP611, from the sea anemone Entacmaea quadricolor cloned in Escherichia coli. With an excitation maximum at 559 nm and an emission maximum at 611 nm, the recombinant protein shows the most red-shifted emission and the largest Stokes shift of all nonmodified proteins in the green fluorescent protein family. The protein fluoresces with a high quantum yield of 0.45, although it resembles the nonfluorescent members of this protein class, as inferred from the absence of the key amino acid serine at position 143. Fluorescence is constant within the range pH 4–10. Red fluorophore maturation reaches a level of 90% after ≈12 h by passing through a green intermediate. After complete maturation, only a small fraction of the green species (less than 1%) persists. The protein has a reduced tendency to oligomerize, as shown by its monomeric appearance in SDS/PAGE analysis and single-molecule experiments. However, it forms tetramers at higher concentrations in the absence of detergent. Fluorescence correlation spectroscopy reveals light-driven transitions between bright and dark states on submillisecond and millisecond time scales. Applicability of eqFP611 for in vivo labeling in eukaryotic systems was shown by expression in a mammalian cell culture.


ACS Nano | 2010

Endo- and exocytosis of zwitterionic quantum dot nanoparticles by live HeLa cells.

Xiue Jiang; Carlheinz Röcker; Margit Hafner; Stefan Brandholt; René M. Dörlich; G. Ulrich Nienhaus

Uptake and intracellular transport of D-penicillamine coated quantum dots (DPA-QDs) of 4 nm radius by live HeLa cells have been investigated systematically by spinning disk and 4Pi confocal microscopies. Unlike larger nanoparticles, these small DPA-QDs were observed to accumulate at the plasma membrane prior to internalization, and the uptake efficiency scaled nonlinearly with the nanoparticle concentration. Both observations indicate that a critical threshold density has to be exceeded for triggering the internalization process. By using specific inhibitors, we showed that DPA-QDs were predominantly internalized by clathrin-mediated endocytosis and to a smaller extent by macropinocytosis. Clusters of DPA-QDs were found in endosomes, which were actively transported along microtubules toward the perinuclear region. Later on, a significant fraction of endocytosed DPA-QDs were found in lysosomes, while others were actively transported to the cell periphery and exocytosed with a half-life of 21 min.


Journal of the Royal Society Interface | 2010

Quantitative analysis of the protein corona on FePt nanoparticles formed by transferrin binding

Xiue Jiang; Stefan Weise; Margit Hafner; Carlheinz Röcker; Feng Zhang; Wolfgang J. Parak; G. Ulrich Nienhaus

Nanoparticles are finding a rapidly expanding range of applications in research and technology, finally entering our daily life in medical, cosmetic or food products. Their ability to invade all regions of an organism including cells and cellular organelles offers new strategies for medical diagnosis and therapy (nanomedicine), but their safe use requires a deep knowledge about their interactions with biological systems at the molecular level. Upon incorporation, nanoparticles are exposed to biological fluids from which they adsorb proteins and other biomolecules to form a ‘protein corona’. These nanoparticle–protein interactions are still poorly understood and quantitative studies to characterize them remain scarce. Here we have quantitatively analysed the adsorption of human transferrin onto small (radius approx. 5 nm) polymer-coated FePt nanoparticles by using fluorescence correlation spectroscopy. Transferrin binds to the negatively charged nanoparticles with an affinity of approximately 26 µM in a cooperative fashion and forms a monolayer with a thickness of 7 nm. By using confocal fluorescence microscopy, we have observed that the uptake of FePt nanoparticles by HeLa cells is suppressed by the protein corona compared with the bare nanoparticles.


PLOS ONE | 2009

mRuby, a Bright Monomeric Red Fluorescent Protein for Labeling of Subcellular Structures

Simone Kredel; Franz Oswald; Karin Nienhaus; Karen Deuschle; Carlheinz Röcker; Michael Wolff; Ralf Heilker; G. Ulrich Nienhaus; Jörg Wiedenmann

A monomeric variant of the red fluorescent protein eqFP611, mRuby, is described. With excitation and emission maxima at 558 nm and 605 nm, respectively, and a large Stokes shift of 47 nm, mRuby appears particularly useful for imaging applications. The protein shows an exceptional resistance to denaturation at pH extremes. Moreover, mRuby is about ten-fold brighter compared to EGFP when being targeted to the endoplasmic reticulum. The engineering process of eqFP611 revealed that the C-terminal tail of the protein acts as a natural peroxisomal targeting signal (PTS). Using an mRuby variant carrying the eqFP611-PTS, we discovered that ordered inheritance of peroxisomes is widespread during mitosis of different mammalian cell types. The ordered partitioning is realized by the formation of peroxisome clusters around the poles of the mitotic spindle and ensures that equal numbers of the organelle are inherited by the daughter cells. The unique spectral properties make mRuby the marker of choice for a multitude of cell biological applications. Moreover, the use of mRuby has allowed novel insights in the biology of organelles responsible for severe human diseases.


Photochemistry and Photobiology | 2006

Photoconvertible Fluorescent Protein EosFP: Biophysical Properties and Cell Biology Applications

G. Ulrich Nienhaus; Karin Nienhaus; Angela Hölzle; Sergey Ivanchenko; Fabiana Renzi; Franz Oswald; Michael Wolff; Florian Schmitt; Carlheinz Röcker; Beatrice Vallone; Wolfgang Weidemann; Ralf Heilker; Herbert Nar; Jörg Wiedenmann

Abstract EosFP is a fluorescent protein from the coral Lobophyllia hemprichii that changes its fluorescence emission from green to red upon irradiation with near-UV light. Here we present the spectroscopic properties of wild-type EosFP and a variety of monomeric and dimeric mutants and provide a structural interpretation of its oligomerization and photoconversion, which is based on X-ray structure analysis of the green and red species that we reported recently. Because functional expression of the monomeric EosFP variant is limited to temperatures of 30°C, we have developed a tandem dimer. This construct, in which two EosFP subunits are connected by a flexible 12 amino acid linker, expresses well after fusion with the androgen and endothelin A receptors at 37°C. A variety of applications in cellular imaging, developmental biology and automated high-content screening applications are presented, which demonstrate that EosFP is a powerful tool for in vivo monitoring of cellular processes.


Biomaterials | 2010

Lysosomal degradation of the carboxydextran shell of coated superparamagnetic iron oxide nanoparticles and the fate of professional phagocytes

Oleg Lunov; Tatiana Syrovets; Carlheinz Röcker; Kyrylo Tron; Gerd Ulrich Nienhaus; Volker Rasche; Volker Mailänder; Katharina Landfester; Thomas Simmet

Contrast agents based on dextran-coated superparamagnetic iron oxide nanoparticles (SPIO) are internalized by professional phagocytes such as hepatic Kupffer cells, yet their role in phagocyte biology remains largely unknown. Here we investigated the effects of the SPIO ferucarbotran on murine Kupffer cells and human macrophages. Intravenous injection of ferucarbotran into mice led to rapid accumulation of the particles in phagocytes and to long-lasting increased iron deposition in liver and kidneys. Macrophages incorporate ferucarbotran in lysosomal vesicles containing α-glucosidase, which is capable of degrading the carboxydextran shell of the ferucarbotran particles. Intravenous injection of ferucarbotran into mice followed by incorporation of the nanoparticles into Kupffer cells triggered apoptosis and the subsequent depletion of Kupffer cells. In macrophages, the proinflammatory cytokine TNF-α increased the apoptosis rate, the reactive oxygen species production and the activation of c-Jun N-terminal kinase elicited by ferucarbotran, which might be mediated by the induction of cytoplasmic phospholipase A2 by TNF-α. Notably, the nanoparticle-induced apoptosis of murine Kupffer cells could be prevented by treatment of the mice with the radical scavenger edaravone. Thus, nanosized carboxydextran-coated SPIO-based contrast agents are retained for extended time periods by liver macrophages, where they elicit delayed cell death, which can be antagonized by a therapeutic radical scavenger.


Biomaterials | 2010

The effect of carboxydextran-coated superparamagnetic iron oxide nanoparticles on c-Jun N-terminal kinase-mediated apoptosis in human macrophages

Oleg Lunov; Tatiana Syrovets; B. Büchele; Xiue Jiang; Carlheinz Röcker; Kyrylo Tron; Gerd Ulrich Nienhaus; Paul Walther; Volker Mailänder; Katharina Landfester; Thomas Simmet

Superparamagnetic iron oxide nanoparticles are frequently used for cell labeling or as diagnostic contrast media, yet studies analyzing their effects on immune cells remain scarce. Here we investigated how nanosized carboxydextran-coated superparamagnetic iron oxide (SPIO) and ultrasmall superparamagnetic iron oxide (USPIO) might affect human macrophages. Within 1 h, both SPIO and USPIO were rapidly taken up by macrophages. Confocal microscopy revealed that after 24 h the particles were almost exclusively localized within the lysosomal compartment. Continued cultivation of the macrophages for several days was associated with apoptosis induction caused by a long-lasting activation of the c-Jun N-terminal kinase (JNK) pathway. JNK activation was due to significantly elevated levels of reactive oxygen species, whereas no TNF-alpha was produced by the macrophages treated with nanoparticles. Compared to SPIO, USPIO induced more pronounced biochemical alterations and cytotoxicity, which could be antagonized by the JNK inhibitor V. Alternatively, treatment of macrophages with Trolox or N-acetyl-L-cysteine, two functionally different scavengers of reactive oxygen species, abolished both the JNK activation and the subsequent cytotoxic effects. These data indicate that nanosized superparamagnetic iron oxide-based contrast media exert cytotoxicity in human macrophages that can be functionally antagonized with radical scavengers.


Biomacromolecules | 2010

Specific Effects of Surface Amines on Polystyrene Nanoparticles in their Interactions with Mesenchymal Stem Cells

Xiue Jiang; Julia Dausend; Margit Hafner; Anna Musyanovych; Carlheinz Röcker; Katharina Landfester; Volker Mailänder; G. Ulrich Nienhaus

We have investigated the uptake of cationic polystyrene nanoparticles by mesenchymal stem cells (MSCs) using confocal fluorescence microscopy and flow cytometry. Two types of nanoparticles of about 100 nm diameter with similar zeta potentials were employed in this study, plain polystyrene (PS) nanoparticles and amino-functionalized polystyrene (NPS) nanoparticles, each carrying about 6000 amino groups on the surface. To assess the relative importance of specific endocytosis mechanisms, uptake was observed in the presence of the drugs dynasore and chlorpromazine. NPS nanoparticles were rapidly internalized and accumulated to a much higher level in MSCs than PS nanoparticles, predominantly via the main clathrin-mediated pathway. PS nanoparticles were internalized mainly via clathrin-independent endocytosis. The pronounced difference in the internalization behavior of PS and NPS nanoparticles points to specific interactions of the amino groups on the nanoparticle surface with the endocytosis machinery of the cells.


Biophysical Journal | 2000

Sensitivity Enhancement in Fluorescence Correlation Spectroscopy of Multiple Species Using Time-Gated Detection

Don C. Lamb; Andreas D. Schenk; Carlheinz Röcker; C. Scalfi-Happ; G. Ulrich Nienhaus

Fluorescence correlation spectroscopy (FCS) is a powerful technique to measure chemical reaction rates and diffusion coefficients of molecules in thermal equilibrium. The capabilities of FCS can be enhanced by measuring the energy, polarization, or delay time between absorption and emission of the collected fluorescence photons in addition to their arrival times. This information can be used to change the relative intensities of multiple fluorescent species in FCS measurements and, thus, the amplitude of the intensity autocorrelation function. Here we demonstrate this strategy using lifetime gating in FCS experiments. Using pulsed laser excitation and laser-synchronized gating in the detection channel, we suppress photons emitted within a certain time interval after excitation. Three applications of the gating technique are presented: suppression of background fluorescence, simplification of FCS reaction studies, and investigation of lifetime heterogeneity of fluorescently labeled biomolecules. The usefulness of this technique for measuring forward and backward rates of protein fluctuations in equilibrium and for distinguishing between static and dynamic heterogeneity makes it a promising tool in the investigation of chemical reactions and conformational fluctuations in biomolecules.


Biophysical Journal | 2004

Photodynamics of Red Fluorescent Proteins Studied by Fluorescence Correlation Spectroscopy

Andreas D. Schenk; Sergey Ivanchenko; Carlheinz Röcker; Jörg Wiedenmann; G. Ulrich Nienhaus

Red fluorescent proteins are important tools in fluorescence-based life science research. Recently, we have introduced eqFP611, a red fluorescent protein with advantageous properties from the sea anemone Entacmaea quadricolor. Here, we have studied the submillisecond light-driven intramolecular dynamics between bright and dark states of eqFP611 and, for comparison, drFP583 (DsRed) by using fluorescence correlation spectroscopy on protein solutions. A three-state model with one dark and two fluorescent states describes the power-dependence of the flickering dynamics of both proteins at different excitation wavelengths. It involves two light-driven conformational transitions. We have also studied the photodynamics of individual (monomeric) eqFP611 molecules immobilized on surfaces. The flickering rates and dark state fractions of eqFP611 bound to polyethylene glycol-covered glass surfaces were identical to those measured in solution, showing that the bound FPs behaved identically. A second, much slower flickering process was observed on the 10-ms timescale. Deposition of eqFP611 molecules on bare glass surfaces yielded bright fluorescence without any detectable flickering and a >10-fold decreased photobleaching yield. These observations underscore the intimate connection between protein motions and photophysical processes in fluorescent proteins.

Collaboration


Dive into the Carlheinz Röcker's collaboration.

Top Co-Authors

Avatar

G. Ulrich Nienhaus

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gerd Ulrich Nienhaus

Karlsruhe Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xiue Jiang

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge