Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carlie A. LaLone is active.

Publication


Featured researches published by Carlie A. LaLone.


Environmental Health Perspectives | 2013

Current perspectives on the use of alternative species in human health and ecological hazard assessments.

Edward J. Perkins; Gerald T. Ankley; Kevin M. Crofton; Natàlia Garcia-Reyero; Carlie A. LaLone; Mark S. Johnson; Joseph E. Tietge; Daniel L. Villeneuve

Background: Traditional animal toxicity tests can be time and resource intensive, thereby limiting the number of chemicals that can be comprehensively tested for potential hazards to humans and/or to the environment. Objective: We compared several types of data to demonstrate how alternative models can be used to inform both human and ecological risk assessment. Methods: We reviewed and compared data derived from high throughput in vitro assays to fish reproductive tests for seven chemicals. We investigated whether human-focused assays can be predictive of chemical hazards in the environment. We examined how conserved pathways enable the use of nonmammalian models, such as fathead minnow, zebrafish, and Xenopus laevis, to understand modes of action and to screen for chemical risks to humans. Results: We examined how dose-dependent responses of zebrafish embryos exposed to flusilazole can be extrapolated, using pathway point of departure data and reverse toxicokinetics, to obtain human oral dose hazard values that are similar to published mammalian chronic toxicity values for the chemical. We also examined how development/safety data for human health can be used to help assess potential risks of pharmaceuticals to nontarget species in the environment. Discussion: Using several examples, we demonstrate that pathway-based analysis of chemical effects provides new opportunities to use alternative models (nonmammalian species, in vitro tests) to support decision making while reducing animal use and associated costs. Conclusions: These analyses and examples demonstrate how alternative models can be used to reduce cost and animal use while being protective of both human and ecological health. Citation: Perkins EJ, Ankley GT, Crofton KM, Garcia-Reyero N, LaLone CA, Johnson MS, Tietge JE, Villeneuve DL. 2013. Current perspectives on the use of alternative species in human health and ecological hazard assessments. Environ Health Perspect 121:1002–1010; http://dx.doi.org/10.1289/ehp.1306638


Aquatic Toxicology | 2013

Molecular target sequence similarity as a basis for species extrapolation to assess the ecological risk of chemicals with known modes of action

Carlie A. LaLone; Daniel L. Villeneuve; Lyle D. Burgoon; Christine L. Russom; Henry W. Helgen; Jason P. Berninger; Joseph E. Tietge; Megan N. Severson; Jenna E. Cavallin; Gerald T. Ankley

It is not feasible to conduct toxicity tests with all species that may be impacted by chemical exposures. Therefore, cross-species extrapolation is fundamental to environmental risk assessment. Recognition of the impracticality of generating empirical, whole organism, toxicity data for the extensive universe of chemicals in commerce has been an impetus driving the field of predictive toxicology. We describe a strategy that leverages expanding databases of molecular sequence information together with identification of specific molecular chemical targets whose perturbation can lead to adverse outcomes to support predictive species extrapolation. This approach can be used to predict which species may be more (or less) susceptible to effects following exposure to chemicals with known modes of action (e.g., pharmaceuticals, pesticides). Primary amino acid sequence alignments are combined with more detailed analyses of conserved functional domains to derive the predictions. This methodology employs bioinformatic approaches to automate, collate, and calculate quantitative metrics associated with cross-species sequence similarity of key molecular initiating events (MIEs). Case examples focused on the actions of (a) 17α-ethinyl estradiol on the human (Homo sapiens) estrogen receptor; (b) permethrin on the mosquito (Aedes aegypti) voltage-gated para-like sodium channel; and (c) 17β-trenbolone on the bovine (Bos taurus) androgen receptor are presented to demonstrate the potential predictive utility of this species extrapolation strategy. The examples compare empirical toxicity data to cross-species predictions of intrinsic susceptibility based on analyses of sequence similarity relevant to the MIEs of defined adverse outcome pathways. Through further refinement, and definition of appropriate domains of applicability, we envision practical and routine utility for the molecular target similarity-based predictive method in chemical risk assessment, particularly where testing resources are limited.


Environmental Toxicology and Chemistry | 2012

Effects of a glucocorticoid receptor agonist, dexamethasone, on fathead minnow reproduction, growth, and development

Carlie A. LaLone; Daniel L. Villeneuve; Allen W. Olmstead; Elizabeth K. Medlock; Michael D. Kahl; Kathleen M. Jensen; Elizabeth J. Durhan; Elizabeth A. Makynen; Chad Blanksma; Jenna E. Cavallin; Linnea M. Thomas; Sara M. Seidl; Sarah Y. Skolness; Leah C. Wehmas; Rodney D. Johnson; Gerald T. Ankley

Synthetic glucocorticoids are pharmaceutical compounds prescribed in human and veterinary medicine as anti-inflammatory agents and have the potential to contaminate natural watersheds via inputs from wastewater treatment facilities and confined animal-feeding operations. Despite this, few studies have examined the effects of this class of chemicals on aquatic vertebrates. To generate data to assess potential risk to the aquatic environment, we used fathead minnow 21-d reproduction and 29-d embryo-larvae assays to determine reproductive toxicity and early-life-stage effects of dexamethasone. Exposure to 500 µg dexamethasone/L in the 21-d test caused reductions in fathead minnow fecundity and female plasma estradiol concentrations and increased the occurrence of abnormally hatched fry. Female fish exposed to 500 µg dexamethasone/L also displayed a significant increase in plasma vitellogenin protein levels, possibly because of decreased spawning. A decrease in vitellogenin messenger ribonucleic acid (mRNA) expression in liver tissue from females exposed to the high dexamethasone concentration lends support to this hypothesis. Histological results indicate that a 29-d embryo-larval exposure to 500 µg dexamethasone/L caused a significant increase in deformed gill opercula. Fry exposed to 500 µg dexamethasone/L for 29 d also exhibited a significant reduction in weight and length compared with control fry. Taken together, these results indicate that nonlethal concentrations of a model glucocorticoid receptor agonist can impair fish reproduction, growth, and development.


Environmental Toxicology and Chemistry | 2013

Cross-species sensitivity to a novel androgen receptor agonist of potential environmental concern, spironolactone

Carlie A. LaLone; Daniel L. Villeneuve; Jenna E. Cavallin; Michael D. Kahl; Elizabeth J. Durhan; Elizabeth A. Makynen; Kathleen M. Jensen; Kyle Stevens; Megan N. Severson; Chad Blanksma; Kevin Flynn; Philip C. Hartig; Jonne S. Woodard; Jason P. Berninger; Teresa J. Norberg-King; Rodney D. Johnson; Gerald T. Ankley

Spironolactone is a pharmaceutical that in humans is used to treat conditions like hirsutism, various dermatologic afflictions, and female-pattern hair loss through antagonism of the androgen receptor. Although not routinely monitored in the environment, spironolactone has been detected downstream of a pharmaceutical manufacturer, indicating a potential for exposure of aquatic species. Furthermore, spironolactone has been reported to cause masculinization of female western mosquitofish, a response indicative of androgen receptor activation. Predictive methods to identify homologous proteins to the human and western mosquitofish androgen receptor suggest that vertebrates would be more susceptible to adverse effects mediated by chemicals like spironolactone that target the androgen receptor compared with invertebrate species that lack a relevant homolog. In addition, an adverse outcome pathway previously developed for activation of the androgen receptor suggests that androgen mimics can lead to reproductive toxicity in fish. To assess this, 21-d reproduction studies were conducted with 2 fish species, fathead minnow and Japanese medaka, and the invertebrate Daphnia magna. Spironolactone significantly reduced the fecundity of medaka and fathead minnows at 50 μg/L, whereas daphnia reproduction was not affected by concentrations as large as 500 μg/L. Phenotypic masculinization of females of both fish species was observed at 5 μg/L as evidenced by formation of tubercles in fathead minnows and papillary processes in Japanese medaka. Effects in fish occurred at concentrations below those reported in the environment. These results demonstrate how a priori knowledge of an adverse outcome pathway and the conservation of a key molecular target across vertebrates can be utilized to identify potential chemicals of concern in terms of monitoring and highlight potentially sensitive species and endpoints for testing.


Philosophical Transactions of the Royal Society B | 2014

Leveraging existing data for prioritization of the ecological risks of human and veterinary pharmaceuticals to aquatic organisms

Carlie A. LaLone; Jason P. Berninger; Daniel L. Villeneuve; Gerald T. Ankley

Medicinal innovation has led to the discovery and use of thousands of human and veterinary drugs. With this comes the potential for unintended effects on non-target organisms exposed to pharmaceuticals inevitably entering the environment. The impracticality of generating whole-organism chronic toxicity data representative of all species in the environment has necessitated prioritization of drugs for focused empirical testing as well as field monitoring. Current prioritization strategies typically emphasize likelihood for exposure (i.e. predicted/measured environmental concentrations), while incorporating only rather limited consideration of potential effects of the drug to non-target organisms. However, substantial mammalian pharmacokinetic and mechanism/mode of action (MOA) data are produced during drug development to understand drug target specificity and efficacy for intended consumers. An integrated prioritization strategy for assessing risks of human and veterinary drugs would leverage available pharmacokinetic and toxicokinetic data for evaluation of the potential for adverse effects to non-target organisms. In this reiview, we demonstrate the utility of read-across approaches to leverage mammalian absorption, distribution, metabolism and elimination data; analyse cross-species molecular target conservation and translate therapeutic MOA to an adverse outcome pathway(s) relevant to aquatic organisms as a means to inform prioritization of drugs for focused toxicity testing and environmental monitoring.


Environmental Toxicology and Chemistry | 2014

Integrated assessment of runoff from livestock farming operations: Analytical chemistry, in vitro bioassays, and in vivo fish exposures

Jenna E. Cavallin; Elizabeth J. Durhan; Nicola Evans; Kathleen M. Jensen; Michael D. Kahl; Dana W. Kolpin; Edward P. Kolodziej; William T. Foreman; Carlie A. LaLone; Elizabeth A. Makynen; Sara M. Seidl; Linnea M. Thomas; Daniel L. Villeneuve; Matthew A. Weberg; Vickie S. Wilson; Gerald T. Ankley

Animal waste from livestock farming operations can contain varying levels of natural and synthetic androgens and/or estrogens, which can contaminate surrounding waterways. In the present study, surface stream water was collected from 6 basins containing livestock farming operations. Aqueous concentrations of 12 hormones were determined via chemical analyses. Relative androgenic and estrogenic activity was measured using in vitro cell assays (MDA-kb2 and T47D-Kbluc assays, respectively). In parallel, 48-h static-renewal in vivo exposures were conducted to examine potential endocrine-disrupting effects in fathead minnows. Mature fish were exposed to surface water dilutions (0%, 25%, 50%, and 100%) and 10-ng/L of 17α-ethynylestradiol or 50-ng/L of 17β-trenbolone as positive controls. Hepatic expression of vitellogenin and estrogen receptor α mRNA, gonadal ex vivo testosterone and 17β-estradiol production, and plasma vitellogenin concentrations were examined. Potentially estrogenic and androgenic steroids were detected at low nanogram per liter concentrations. In vitro estrogenic activity was detected in all samples, whereas androgenic activity was detected in only 1 sample. In vivo exposures to the surface water had no significant dose-dependent effect on any of the biological endpoints, with the exception of increased male testosterone production in 1 exposure. The present study, which combines analytical chemistry measurements, in vitro bioassays, and in vivo fish exposures, highlights the integrated value and future use of a combination of techniques to obtain a comprehensive characterization of an environmental chemical mixture.


Environmental Toxicology and Chemistry | 2016

Pathway-based approaches for assessment of real-time exposure to an estrogenic wastewater treatment plant effluent on fathead minnow reproduction

Jenna E. Cavallin; Kathleen M. Jensen; Michael D. Kahl; Daniel L. Villeneuve; Kathy E. Lee; Anthony L. Schroeder; Joe Mayasich; Evan Eid; Krysta R. Nelson; Rebecca Y. Milsk; Brett R. Blackwell; Jason P. Berninger; Carlie A. LaLone; Chad Blanksma; Terri M. Jicha; Colleen M. Elonen; Rodney D. Johnson; Gerald T. Ankley

Wastewater treatment plant (WWTP) effluents are known contributors of chemical mixtures into the environment. Of particular concern are endocrine-disrupting compounds, such as estrogens, which can affect the hypothalamic-pituitary-gonadal axis function in exposed organisms. The present study examined reproductive effects in fathead minnows exposed for 21 d to a historically estrogenic WWTP effluent. Fathead minnow breeding pairs were held in control water or 1 of 3 effluent concentrations (5%, 20%, and 100%) in a novel onsite, flow-through system providing real-time exposure. The authors examined molecular and biochemical endpoints representing key events along adverse outcome pathways linking estrogen receptor activation and other molecular initiating events to reproductive impairment. In addition, the authors used chemical analysis of the effluent to construct a chemical-gene interaction network to aid in targeted gene expression analyses and identifying potentially impacted biological pathways. Cumulative fecundity was significantly reduced in fish exposed to 100% effluent but increased in those exposed to 20% effluent, the approximate dilution factor in the receiving waters. Plasma vitellogenin concentrations in males increased in a dose-dependent manner with effluent concentration; however, male fertility was not impacted. Although in vitro analyses, analytical chemistry, and biomarker responses confirmed the effluent was estrogenic, estrogen receptor agonists were unlikely the primary driver of impaired reproduction. The results provide insights into the significance of pathway-based effects with regard to predicting adverse reproductive outcomes.


Toxicological Sciences | 2016

Editor’s Highlight: Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS): A Web-Based Tool for Addressing the Challenges of Cross-Species Extrapolation of Chemical Toxicity

Carlie A. LaLone; Daniel L. Villeneuve; David Lyons; Henry W. Helgen; Serina L. Robinson; Joseph A. Swintek; Travis W. Saari; Gerald T. Ankley

Conservation of a molecular target across species can be used as a line-of-evidence to predict the likelihood of chemical susceptibility. The web-based Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS; https://seqapass.epa.gov/seqapass/) application was developed to simplify, streamline, and quantitatively assess protein sequence/structural similarity across taxonomic groups as a means to predict relative intrinsic susceptibility. The intent of the tool is to allow for evaluation of any potential protein target while remaining amenable to variable degrees of protein characterization, in the context of available information about the chemical/protein interaction and the molecular target itself. To accommodate this flexibility in the analysis, 3 levels of evaluation were developed. The first level of the SeqAPASS analysis compares primary amino acid sequences to a query sequence, calculating a metric for sequence similarity (including detection of orthologs); the second level evaluates sequence similarity within selected functional domains (eg, ligand-binding domain); and the third level of analysis compares individual amino acid residue positions of importance for protein conformation and/or interaction with the chemical upon binding. Each level of the SeqAPASS analysis provides additional evidence to apply toward rapid, screening-level assessments of probable cross species susceptibility. Such analyses can support prioritization of chemicals for further evaluation, selection of appropriate species for testing, extrapolation of empirical toxicity data, and/or assessment of the cross-species relevance of adverse outcome pathways. Three case studies are described herein to demonstrate application of the SeqAPASS tool: the first 2 focused on predictions of pollinator susceptibility to molt-accelerating compounds and neonicotinoid insecticides, and the third on evaluation of cross-species susceptibility to strobilurin fungicides. These analyses illustrate challenges in species extrapolation and demonstrate the broad utility of SeqAPASS for risk-based decision making and research.


Environmental Science & Technology | 2012

Short-term study investigating the estrogenic potency of diethylstilbesterol in the fathead minnow (Pimephales promelas)

Olufemi Bolarinwa Adedeji; Elizabeth J. Durhan; Natàlia Garcia-Reyero; Michael D. Kahl; Kathleen M. Jensen; Carlie A. LaLone; Elizabeth A. Makynen; Edward J. Perkins; Linnea M. Thomas; Daniel L. Villeneuve; Gerald T. Ankley

Diethylstilbestrol (DES) is a synthetic estrogen that has been banned for use in humans, but still is employed in livestock and aquaculture operations in some parts of the world. Detectable concentrations of DES in effluent and surface waters have been reported to range from slightly below 1 to greater than 10 ng/L. Little is known, however, concerning the toxicological potency of DES in fish. In this study, sexually mature fathead minnows (Pimephales promelas) of both sexes were exposed to 1, 10, or 100 ng of DES/L of water in a flow-through system. Tissue concentrations of DES and changes in a number of estrogen-responsive end points were measured in the fish at the end of a 4 d exposure and after a 4 d depuration/recovery period in clean water. Accumulation of DES was sex-dependent, with females exhibiting higher tissue residues than males after the 4 d exposure. The observed bioconcentration of DES in the fish was about 1 order of magnitude lower than that predicted on the basis of the octanol-water partition coefficient of the chemical, suggesting relatively efficient metabolic clearance by the fish. Exposure to 1, 10, or 100 ng of DES/L caused decreased testis weight and morphological demasculinization of males (regression of dorsal nuptial tubercles). Diethylstilbesterol induced plasma vitellogenin (VTG) in both sexes at water concentrations ≥10 ng/L; this response (especially in males) persisted through the end of the 4 d recovery period. Hepatic transcripts of VTG and estrogen receptor-α also were affected at DES concentrations ≥10 ng/L. Evaluation of transcript profiles in the liver of females using a 15K-gene fathead minnow microarray revealed a concentration-dependent change in gene expression, with mostly up-regulated transcripts after the exposure and substantial numbers of down-regulated gene products after depuration. Genes previously identified as vitellogenesis-related and regulated by 17β-estradiol were significantly enriched among those differentially expressed following exposure to DES. Overall, our studies show that DES causes a range of responses in fish at water concentrations comparable to those reported in the environment and that in vivo potency of the estrogen is on par with that of the better-studied estrogenic contaminant 17α-ethinylestradiol.


Environmental Toxicology and Chemistry | 2014

An inexpensive, temporally integrated system for monitoring occurrence and biological effects of aquatic contaminants in the field

Michael D. Kahl; Daniel L. Villeneuve; Kyle Stevens; Anthony L. Schroeder; Elizabeth A. Makynen; Carlie A. LaLone; Kathleen M. Jensen; Meagan Hughes; Bruce A. Holmen; Evan Eid; Elizabeth J. Durhan; Jenna E. Cavallin; Jason P. Berninger; Gerald T. Ankley

Assessment of potential risks of complex contaminant mixtures in the environment requires integrated chemical and biological approaches. In support of the US Great Lakes Restoration Initiative, the US Environmental Protection Agency lab in Duluth, MN, is developing these types of methods for assessing possible risks of aquatic contaminants in near-shore Great Lakes (USA) sites. One component involves an exposure system for caged fathead minnow (Pimephales promelas) adults suitable for the wide range of habitat and deployment situations encountered in and around the Great Lakes. To complement the fish exposure system, the authors developed an automated device for collection of composite water samples that could be simultaneously deployed with the cages and reflect a temporally integrated exposure of the animals. The present study describes methodological details of the design, construction, and deployment of a flexible yet comparatively inexpensive (<600 USD) caged-fish/autosampler system. The utility and performance of the system were demonstrated with data collected from deployments at several Great Lakes sites. For example, over 3 field seasons, only 2 of 130 deployed cages were lost, and approximately 99% of successfully deployed adult fish were recovered after exposures of 4 d or longer. A number of molecular, biochemical, and apical endpoints were successfully measured in recovered animals, changes in which reflected known characteristics of the study sites (e.g., upregulation of hepatic genes involved in xenobiotic metabolism in fish held in the vicinity of wastewater treatment plants). The automated composite samplers proved robust with regard to successful water collection (>95% of deployed units in the latest field season), and low within- and among-unit variations were found relative to programmed collection volumes. Overall, the test system has excellent potential for integrated chemical-biological monitoring of contaminants in a variety of field settings.

Collaboration


Dive into the Carlie A. LaLone's collaboration.

Top Co-Authors

Avatar

Daniel L. Villeneuve

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Gerald T. Ankley

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Kathleen M. Jensen

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Michael D. Kahl

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Jenna E. Cavallin

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Elizabeth J. Durhan

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Elizabeth A. Makynen

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge