Carlo A. Porro
University of Modena and Reggio Emilia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Carlo A. Porro.
The Journal of Neuroscience | 1996
Carlo A. Porro; Maria Pia Francescato; Valentina Cettolo; Mathew E. Diamond; Patrizia Baraldi; Chiara Zuiani; Massimo Bazzocchi; Pietro E. di Prampero
The intensity and spatial distribution of functional activation in the left precentral and postcentral gyri during actual motor performance (MP) and mental representation [motor imagery (MI)] of self-paced finger-to-thumb opposition movements of the dominant hand were investigated in fourteen right-handed volunteers by functional magnetic resonance imaging (fMRI) techniques. Significant increases in mean normalized fMRI signal intensities over values obtained during the control (visual imagery) tasks were found in a region including the anterior bank and crown of the central sulcus, the presumed site of the primary motor cortex, during both MP (mean percentage increase, 2.1%) and MI (0.8%). In the anterior portion of the precentral gyrus and the postcentral gyrus, mean functional activity levels were also increased during both conditions (MP, 1.7 and 1.2%; MI, 0.6 and 0.4%, respectively). To locate activated foci during MI, MP, or both conditions, the time course of the signal intensities of pixels lying in the precentral or postcentral gyrus was plotted against single-step or double-step waveforms, where the steps of the waveform corresponded to different tasks. Pixels significantly (r > 0.7) activated during both MP and MI were identified in each region in the majority of subjects; percentage increases in signal intensity during MI were on average 30% as great as increases during MP. The pixels activated during both MP and MI appear to represent a large fraction of the whole population activated during MP. These results support the hypothesis that MI and MP involve overlapping neural networks in perirolandic cortical areas.
Journal of Cognitive Neuroscience | 2004
Giovanni Buccino; Fausta Lui; Nicola Canessa; Ilaria Patteri; Giovanna Lagravinese; Francesca Benuzzi; Carlo A. Porro; Giacomo Rizzolatti
Functional magnetic resonance imaging was used to assess the cortical areas active during the observation of mouth actions performed by humans and by individuals belonging to other species (monkey and dog). Two types of actions were presented: biting and oral communicative actions (speech reading, lip-smacking, barking). As a control, static images of the same actions were shown. Observation of biting, regardless of the species of the individual performing the action, determined two activation foci (one rostral and one caudal) in the inferior parietal lobule and an activation of the pars opercularis of the inferior frontal gyrus and the adjacent ventral premotor cortex. The left rostral parietal focus (possibly BA 40) and the left premotor focus were very similar in all three conditions, while the right side foci were stronger during the observation of actions made by conspecifics. The observation of speech reading activated the left pars opercularis of the inferior frontal gyrus, the observation of lip-smacking activated a small focus in the pars opercularis bilaterally, and the observation of barking did not produce any activation in the frontal lobe. Observation of all types of mouth actions induced activation of extrastriate occipital areas. These results suggest that actions made by other individuals may be recognized through different mechanisms. Actions belonging to the motor repertoire of the observer (e.g., biting and speech reading) are mapped on the observers motor system. Actions that do not belong to this repertoire (e.g., barking) are essentially recognized based on their visual properties. We propose that when the motor representation of the observed action is activated, the observer gains knowledge of the observed action in a personal perspective, while this perspective is lacking when there is no motor activation.
The Journal of Neuroscience | 2002
Carlo A. Porro; Patrizia Baraldi; Giuseppe Pagnoni; Marco Serafini; Patrizia Facchin; Marta Maieron; Paolo Nichelli
Anticipation of pain is a complex state that may influence the perception of subsequent noxious stimuli. We used functional magnetic resonance imaging (fMRI) to study changes of activity of cortical nociceptive networks in healthy volunteers while they expected the somatosensory stimulation of one foot, which might be painful (subcutaneous injection of ascorbic acid) or not. Subjects had no previous experience of the noxious stimulus. Mean fMRI signal intensity increased over baseline values during anticipation and during actual stimulation in the putative foot representation area of the contralateral primary somatosensory cortex (SI). Mean fMRI signals decreased during anticipation in other portions of the contralateral and ipsilateral SI, as well as in the anteroventral cingulate cortex. The activity of cortical clusters whose signal time courses showed positive or negative correlations with the individual psychophysical pain intensity curve was also significantly affected during the waiting period. Positively correlated clusters were found in the contralateral SI and bilaterally in the anterior cingulate, anterior insula, and medial prefrontal cortex. Negatively correlated clusters were found in the anteroventral cingulate bilaterally. In all of these areas, changes during anticipation were of the same sign as those observed during pain but less intense (∼30–40% as large as peak changes during actual noxious stimulation). These results provide evidence for top-down mechanisms, triggered by anticipation, modulating cortical systems involved in sensory and affective components of pain even in the absence of actual noxious input and suggest that the activity of cortical nociceptive networks may be directly influenced by cognitive factors.
NeuroImage | 2001
Maria Luisa Gorno-Tempini; Samanta Pradelli; Marco Serafini; Giuseppe Pagnoni; Patrizia Baraldi; Carlo A. Porro; Roberto Nicoletti; Carlo Umità; Paolo Nichelli
Considerable evidence indicates that processing facial expression involves both subcortical (amygdala and basal ganglia) and cortical (occipito-temporal, orbitofrontal, and prefrontal cortex) structures. However, the specificity of these regions for single types of emotions and for the cognitive demands of expression processing, is still unclear. This functional magnetic resonance imaging (fMRI) study investigated the neural correlates of incidental and explicit processing of the emotional content of faces expressing either disgust or happiness. Subjects were examined while they were viewing neutral, disgusted, or happy faces. The incidental task required subjects to decide about face gender, the explicit task to decide about face expression. In the control task subjects were requested to detect a white square in a greyscale mosaic stimulus. Results showed that the left inferior frontal cortex and the bilateral occipito-temporal junction responded equally to all face conditions. Several cortical and subcortical regions were modulated by task type, and by facial expression. Right neostriatum and left amygdala were activated when subjects made explicit judgements of disgust, bilateral orbitofrontal cortex when they made judgement of happiness, and right frontal and insular cortex when they made judgements about any emotion.
Progress in Neurobiology | 1993
Carlo A. Porro; Milena Cavazzuti
Behavioral studies 2.1.1. Temporal profile of pain-related behavior 2.1.2. Modulation by environmental stimuli 2.1.3. Changes of other behavorial parametres 2.2. Electrophysiologieal studies 2.2.1. EMG and EEG 2.2.2. Afferent fibers 2.2.3. Spinal cord 2.2.4. Bralnstem 2.3. Pharmacological and neurochemical studies 2.3.1. Excitatory amino acids 2.3.2. Tachykinins 2.3.3. Endogenous opioids 2.3.4. Biogenic amines 3. 2-Deoxyglucose mapping studies 3.1. The 2-deoxyglucose method 3.2. Spinal cord 3.3. Bralnstem 3.4. Effects of anesthesia 4. Immediate-early genes mapping studies 4.1. Immediate-early genes expression in the central nervous system 4.2. Spinal cord 4.3. Brainstem 4.4. Effects of analgesic drugs 5. Discussion 5.1. Mapping techniques in behaving animals 5.2. Neural mechanisms in the formalin pain model 5.2.1. Spinal cord 5.2.2. Brainstem 5.2.3. Diencephalon and telencephalon Acknowledgements References 565 566 567 567 567 569 569 569 569 570 570 571 571 576 576 577 578 578 578 580 583 586 586 586 587 590 590 590 590 591 591 593 594 595 595
NeuroImage | 2003
Carlo A. Porro; Valentina Cettolo; Maria Pia Francescato; Patrizia Baraldi
The relative contributions of autonomic arousal and of cognitive processing to cortical activity during anticipation of pain, and the role of changes in thalamic outflow, are still largely unknown. To address these issues, we investigated with functional magnetic resonance imaging (fMRI) the activity of the contralateral mesial hemispheric wall in 56 healthy volunteers while they expected the stimulation of one foot, which could be either painful or innocuous. The waiting period was characterized by emotional arousal, a moderate rise in heart rate, and by increases in mean fMRI signals in the medial thalamus, mid- and posterior cingulate cortex, and in the putative foot area of the primary somatosensory and motor cortex. The same brain regions, excepting posterior cingulate, were also activated by somatosensory stimulation. We identified by cross-correlation analysis a cluster population whose fMRI signal time course was related to the mean heart rate (HR) profile, showing selective changes of activity during the waiting period. Positively correlated clusters were found mainly in sensorimotor areas, mid- and posterior cingulate, and dorsomedial prefrontal cortex. Negatively correlated clusters predominated in the perigenual anterior cingulate and ventromedial prefrontal cortex. HR clusters had different characteristics from, and showed limited spatial overlap with, clusters whose fMRI signals were related to the psychophysical pain intensity profile; however, both cluster populations were affected by anticipation. These findings unravel a complex pattern of brain activity during uncertain anticipation of noxious input, likely related both to changes in the level of arousal and to cognitive modulation of the pain system.
European Journal of Neuroscience | 2000
Carlo A. Porro; Valentina Cettolo; Maria Pia Francescato; Patrizia Baraldi
To investigate whether motor imagery involves ipsilateral cortical regions, we studied haemodynamic changes in portions of the motor cortex of 14 right‐handed volunteers during actual motor performance (MP) and kinesthetic motor imagery (MI) of simple sequences of unilateral left or right finger movements, using functional magnetic resonance imaging (fMRI). Increases in mean normalized fMRI signal intensities over values obtained during the control (visual imagery) task were found during both MP and MI in the posterior part of the precentral gyrus and supplementary motor area, both on the contralateral and ipsilateral hemispheres. In the left lateral premotor cortex, fMRI signals were increased during imagery of either left or right finger movements. Ipsilateral cortical clusters displaying fMRI signal changes during both MP and MI were identified by correlation analyses in 10 out of 14 subjects; their extent was larger in the left hemisphere. A larger cortical population involved during both contralateral MP and MI was found in all subjects. The overall spatial extent of both the contralateral and the ipsilateral MP + MI clusters was ∼ 90% of the whole cortical volume activated during MP. These results suggest that overlapping neural networks in motor and premotor cortex of the contralateral and ipsilateral hemispheres are involved during imagery and execution of simple motor tasks.
Journal of Cerebral Blood Flow and Metabolism | 1987
Milena Cavazzuti; Carlo A. Porro; Gian Paolo Biral; Carlo Benassi; Gian Carlo Barbieri
The effects of an anesthetic dose (100 mg/kg) of ketamine, a phencyclidine derivative, on local rates of cerebral glucose utilization (LCGU) and CBF (LCBF) have been investigated by the quantitative [14C]2-deoxyglucose and [14C]iodoantipyrine techniques in the unparalyzed, spontaneously breathing rat. In ketamine-injected animals, LCGU was significantly increased in some limbic structures and decreased in inferior colliculus, vestibular, and cerebellar nuclei. The degree and spatial distribution of drug-induced changes was similar for local blood flow rates, LCBF being increased in limbic regions and decreased in the inferior colliculus. Although PaCO2 values were higher in anesthetized animals, the pattern of LCBF/LCGU ratios was not significantly affected by ketamine in the 36 brain regions examined in this study. So, at least in the rat and at the anesthetic level studied here, a net vasodilatory in vivo effect was not observed. These results support the hypothesis that CBF changes induced by the drug in animals and man are primarily related to the metabolic effects exerted by ketamine on cerebral structures.
NeuroImage | 2008
J. Brooks; Christian F. Beckmann; Karla L. Miller; Richard Geoffrey Wise; Carlo A. Porro; Irene Tracey; Mark Jenkinson
Spinal cord functional imaging allows assessment of activity in primary synaptic connections made by sensory neurons relaying information about the state of the body. However, reported human data based on gradient-echo techniques have been largely inconsistent, with no clear patterns of activation emerging. One reason for this variability is the influence of physiological noise, which is typically not corrected for. By acquiring single-slice resting data from the spinal cord with a conventional gradient-echo EPI pulse sequence at TR=200 ms (critically sampled) and TR=3 s (under-sampled), we have characterised various sources of physiological noise. In 8 healthy subjects, the presence of physiologically dependent signal was explored using probabilistic independent component analysis (PICA). Based on the insights provided by PICA, we defined a new physiological noise model (PNM) based on retrospective image correction (RETROICOR), which uses independent physiological measurements taken from the subject to model sources of noise. Statistical significance of individual components included in the PNM was assessed by F-tests, which demonstrated that the optimal PNM included cardiac, respiratory, interaction and low-frequency regressors. In a group of 10 healthy subjects, activation data were acquired from the cervical spinal region (T1 to C5) during painful thermal stimulation of the right and left hands. The improvement obtained when using a PNM in estimating spinal cord activation was reflected in a reduction of false-positive activation (active voxels in the CSF space surrounding the cord), when compared to conventional GLM modelling without a PNM.
The Journal of Neuroscience | 2008
Francesca Benuzzi; Fausta Lui; Davide Duzzi; Paolo Nichelli; Carlo A. Porro
Looking at still images of body parts in situations that are likely to cause pain has been shown to be associated with activation in some brain areas involved in pain processing. Because pain involves both sensory components and negative affect, it is of interest to explore whether the visually evoked representations of pain and of other negative emotions overlap. By means of event-related functional magnetic resonance imaging, here we compare the brain areas recruited, in female volunteers, by the observation of painful, disgusting, or neutral stimuli delivered to one hand or foot. Several cortical foci were activated by the observation of both painful and disgusting video clips, including portions of the medial prefrontal cortex, anterior, mid-, and posterior cingulate cortex, left posterior insula, and right parietal operculum. Signal changes in perigenual cingulate and left anterior insula were linearly related to the perceived unpleasantness, when the individual differences in susceptibility to aversive stimuli were taken into account. Painful scenes selectively induced activation of left parietal foci, including the parietal operculum, the postcentral gyrus, and adjacent portions of the posterior parietal cortex. In contrast, brain foci specific for disgusting scenes were found in the posterior cingulate cortex. These data show both similarities and differences between the brain patterns of activity related to the observation of noxious or disgusting stimuli. Namely, the parietal cortex appears to be particularly involved in the recognition of noxious environmental stimuli, suggesting that areas involved in sensory aspects of pain are specifically triggered by observing noxious events.