Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carlo Andrea Rozzi is active.

Publication


Featured researches published by Carlo Andrea Rozzi.


Science | 2014

Coherent ultrafast charge transfer in an organic photovoltaic blend

Sarah M. Falke; Carlo Andrea Rozzi; Daniele Brida; Margherita Maiuri; Michele Amato; Ephraim Sommer; Antoinietta De Sio; Angel Rubio; Giulio Cerullo; Elisa Molinari; Christoph Lienau

Pull, pull, pulling electrons along Organic photovoltaics operate by transferring charge from a light-absorbing donor material to a nearby acceptor. Falke et al. show that molecular vibrations smooth the way for this charge transfer to proceed. A combination of ultrafast spectroscopy and theoretical simulations revealed an oscillatory signal in a model donor/acceptor blend that implicates carbon-carbon bond stretching in concert with the electronic transition. This vibrational/electronic, or vibronic, process maintains a quantum-mechanical phase relationship that guides the charge more rapidly and directly than an incoherent migration from donor to acceptor. Science, this issue p. 1001 Oscillations in ultrafast spectra implicate assistance from molecular vibrations in the operation of organic photovoltaics. Blends of conjugated polymers and fullerene derivatives are prototype systems for organic photovoltaic devices. The primary charge-generation mechanism involves a light-induced ultrafast electron transfer from the light-absorbing and electron-donating polymer to the fullerene electron acceptor. Here, we elucidate the initial quantum dynamics of this process. Experimentally, we observed coherent vibrational motion of the fullerene moiety after impulsive optical excitation of the polymer donor. Comparison with first-principle theoretical simulations evidences coherent electron transfer between donor and acceptor and oscillations of the transferred charge with a 25-femtosecond period matching that of the observed vibrational modes. Our results show that coherent vibronic coupling between electronic and nuclear degrees of freedom is of key importance in triggering charge delocalization and transfer in a noncovalently bound reference system.


Physical Review B | 2006

Exact Coulomb cutoff technique for supercell calculations

Carlo Andrea Rozzi; Daniele Varsano; Andrea Marini; E. K. U. Gross; Angel Rubio

Received 23 December 2005; revised manuscript received 31 March 2006; published 26 May 2006 We present a reciprocal space analytical method to cut off the long range interactions in supercell calculations for systems that are infinite and periodic in one or two dimensions, generalizing previous work to treat finite systems. The proposed cutoffs are functions in Fourier space, that are used as a multiplicative factor to screen the bare Coulomb interaction. The functions are analytic everywhere except in a subdomain of the Fourier space that depends on the periodic dimensionality. We show that the divergences that lead to the nonanalytical behavior can be exactly canceled when both the ionic and the Hartree potential are properly screened. This technique is exact, fast, and very easy to implement in already existing supercell codes. To illustrate the performance of the scheme, we apply it to the case of the Coulomb interaction in systems with reduced periodicity as one-dimensional chains and layers. For these test cases, we address the impact of the cutoff on different relevant quantities for ground and excited state properties, namely: the convergence of the ground state properties, the static polarizability of the system, the quasiparticle corrections in the GW scheme, and the binding energy of the excitonic states in the Bethe-Salpeter equation. The results are very promising and easy to implement in all available first-principles codes.


Journal of Physical Chemistry B | 2009

Photoexcitation of a Light-Harvesting Supramolecular Triad: A Time-Dependent DFT Study

N. Spallanzani; Carlo Andrea Rozzi; Daniele Varsano; T. Baruah; M. R. Pederson; F. Manghi; Angel Rubio

We present the first time-dependent density functional theory (TDDFT) calculation on a light-harvesting triad carotenoid-diaryl-porphyrin-C(60). Besides the numerical challenge that the ab initio study of the electronic structure of such a large system presents, we show that TDDFT is able to provide an accurate description of the excited-state properties of the system. In particular, we calculate the photoabsorption spectrum of the supramolecular assembly, and we provide an interpretation of the photoexcitation mechanism in terms of the properties of the component moieties. The spectrum is in good agreement with experimental data, and provides useful insight on the photoinduced charge-transfer mechanism which characterizes the system.


Nature Communications | 2016

Tracking the coherent generation of polaron pairs in conjugated polymers.

Antonietta De Sio; Filippo Troiani; Margherita Maiuri; Julien Réhault; Ephraim Sommer; James Lim; Susana F. Huelga; Martin B. Plenio; Carlo Andrea Rozzi; Giulio Cerullo; Elisa Molinari; Christoph Lienau

The optical excitation of organic semiconductors not only generates charge-neutral electron-hole pairs (excitons), but also charge-separated polaron pairs with high yield. The microscopic mechanisms underlying this charge separation have been debated for many years. Here we use ultrafast two-dimensional electronic spectroscopy to study the dynamics of polaron pair formation in a prototypical polymer thin film on a sub-20-fs time scale. We observe multi-period peak oscillations persisting for up to about 1 ps as distinct signatures of vibronic quantum coherence at room temperature. The measured two-dimensional spectra show pronounced peak splittings revealing that the elementary optical excitations of this polymer are hybridized exciton-polaron-pairs, strongly coupled to a dominant underdamped vibrational mode. Coherent vibronic coupling induces ultrafast polaron pair formation, accelerates the charge separation dynamics and makes it insensitive to disorder. These findings open up new perspectives for tailoring light-to-current conversion in organic materials.


Physical Review Letters | 2014

Ab initio simulation of optical limiting: the case of metal-free phthalocyanine.

Caterina Cocchi; Deborah Prezzi; Alice Ruini; Elisa Molinari; Carlo Andrea Rozzi

We present a fully ab initio, nonperturbative description of the optical limiting properties of a metal-free phthalocyanine by simulating the effects of a broadband electric field of increasing intensity. The results confirm reverse saturable absorption as the leading mechanism for optical limiting phenomena in this system and reveal that a number of dipole-forbidden excitations are populated by excited-state absorption at more intense external fields. The excellent agreement with the experimental data supports our approach as a powerful tool to predict optical limiting in view of applications.


Physical Review B | 2009

Exact Coulomb cutoff technique for supercell calculations in two dimensions

Alberto Castro; Esa Räsänen; Carlo Andrea Rozzi

We present a reciprocal space technique for the calculation of the Coulomb integral in two dimensions in systems with reduced periodicity, i.e., finite systems, or systems that are periodic only in one dimension. The technique consists in cutting off the long-range part of the interaction by modifying the expression for the Coulomb operator in reciprocal space. The physical result amounts in an effective screening of the spurious interactions originated by the presence of ghost periodic replicas of the system. This work extends a previous report [C. A. Rozzi et al., Phys. Rev. B 73, 205119 (2006)], where three-dimensional systems were considered. We show that the use of the cutoffs dramatically enhances the accuracy of the calculations for a given supercell size, and it allows to describe two-dimensional systems of reduced periodicity with substantially less computational effort. In particular, we consider semiconductor quantum-dot arrays having potential applications in quantum information technology.


Physical Review B | 2015

Ab initio theory of spin entanglement in atoms and molecules

S. Pittalis; F. Troiani; Carlo Andrea Rozzi; Giovanni Vignale

We investigate spin entanglement in many-electron systems within the framework of density functional theory. We show that the entanglement length, which is extracted from the spatial dependence of the local concurrence, is a sensitive indicator of atomic shells and reveals the character, covalent or metallic, of chemical bonds. These findings shed light on the remarkable success of modern density functionals, which tacitly employ the entanglement length as a variable. This opens the way to further research on entanglement-based functionals.


Journal of Physics: Condensed Matter | 2018

Quantum modeling of ultrafast photoinduced charge separation

Carlo Andrea Rozzi; Filippo Troiani; Ivano Tavernelli

Phenomena involving electron transfer are ubiquitous in nature, photosynthesis and enzymes or protein activity being prominent examples. Their deep understanding thus represents a mandatory scientific goal. Moreover, controlling the separation of photogenerated charges is a crucial prerequisite in many applicative contexts, including quantum electronics, photo-electrochemical water splitting, photocatalytic dye degradation, and energy conversion. In particular, photoinduced charge separation is the pivotal step driving the storage of sun light into electrical or chemical energy. If properly mastered, these processes may also allow us to achieve a better command of information storage at the nanoscale, as required for the development of molecular electronics, optical switching, or quantum technologies, amongst others. In this Topical Review we survey recent progress in the understanding of ultrafast charge separation from photoexcited states. We report the state-of-the-art of the observation and theoretical description of charge separation phenomena in the ultrafast regime mainly focusing on molecular- and nano-sized solar energy conversion systems. In particular, we examine different proposed mechanisms driving ultrafast charge dynamics, with particular regard to the role of quantum coherence and electron-nuclear coupling, and link experimental observations to theoretical approaches based either on model Hamiltonians or on first principles simulations.


European Physical Journal B | 2018

Bonds, lone pairs, and shells probed by means of on-top dynamical correlations

Stefano Pittalis; Daniele Varsano; Alain Delgado; Carlo Andrea Rozzi

Abstract The electron localization function (ELF) by Becke and Edgecombe [A.D. Becke, K.E. Edgecombe, J. Chem. Phys. 92, 5397 (1990)] is routinely adopted as a descriptor of atomic shells and covalent bonds. Since the ELF and its related quantities find useful exploitation also in the construction of modern density functionals, the interest in complementing the ELF is linked to both the quests of improving electronic structure descriptors and density functional approximations. The ELF uses information which is available by considering parallel-spin electron pairs in single-reference many-body states. In this work, we complement this construction with information obtained by considering antiparallel-spin pairs whose short-range correlations are modeled by a density functional approximation. As a result, the approach requires only a contained computational effort. Applications to a variety of systems show that, in this way, we gain a spatial description of the bond in H2 (which is not available with the ELF) together with some trends not optimally captured by the ELF in other prototypical situations.


New Journal of Physics | 2016

Stability of the Dirac cone in artificial graphene formed in quantum wells: a computational many-electron study

Ilkka Kylänpää; Fulvio Berardi; Esa Räsänen; P. Garcia-Gonzalez; Carlo Andrea Rozzi; Angel Rubio

We carry out a comprehensive computational study on the stability of the Dirac cone in artificial graphene realized in nanopatterned quantum wells. Our real-space approach allows us to vary the size, shape, and positioning of the quantum dots in the hexagonal lattice. We compare the (noninteracting) single-particle calculations to density-functional studies within both local-density approximation and meta-generalized-gradient approximation. Furthermore, the density-functional results are compared against numerically precise path-integral quantum Monte Carlo calculations. As a whole, our results indicate high stability of the Dirac bands against external parameters, which is reassuring for further experimental investigations.

Collaboration


Dive into the Carlo Andrea Rozzi's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elisa Molinari

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar

Daniele Varsano

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Esa Räsänen

Tampere University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge