Carlo Barbieri
Fresenius Medical Care
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Carlo Barbieri.
Kidney International | 2015
Bernard Canaud; Carlo Barbieri; Daniele Marcelli; Francesco Bellocchio; Sudhir K. Bowry; Flavio Mari; Claudia Amato; Emanuele Gatti
Online hemodiafiltration (OL-HDF), the most efficient renal replacement therapy, enables enhanced removal of small and large uremic toxins by combining diffusive and convective solute transport. Randomized controlled trials on prevalent chronic kidney disease (CKD) patients showed improved patient survival with high-volume OL-HDF, underlining the effect of convection volume (CV). This retrospective international study was conducted in a large cohort of incident CKD patients to determine the CV threshold and range associated with survival advantage. Data were extracted from a cohort of adult CKD patients treated by post-dilution OL-HDF over a 101-month period. In total, 2293 patients with a minimum of 2 years of follow-up were analyzed using advanced statistical tools, including cubic spline analyses for determination of the CV range over which a survival increase was observed. The relative survival rate of OL-HDF patients, adjusted for age, gender, comorbidities, vascular access, albumin, C-reactive protein, and dialysis dose, was found to increase at about 55 l/week of CV and to stay increased up to about 75 l/week. Similar analysis of pre-dialysis β2-microglobin (marker of middle-molecule uremic toxins) concentrations found a nearly linear decrease in marker concentration as CV increased from 40 to 75 l/week. Analysis of log C-reactive protein levels showed a decrease over the same CV range. Thus, a convection dose target based on convection volume should be considered and needs to be confirmed by prospective trials as a new determinant of dialysis adequacy.
Health Care Management Science | 2012
Isabella Cattinelli; Elena Bolzoni; Carlo Barbieri; Flavio Mari; José David Martín-Guerrero; Emilio Soria-Olivas; José María Martínez-Martínez; Juan Gómez-Sanchis; Claudia Amato; Andrea Stopper; Emanuele Gatti
The Balanced Scorecard (BSC) is a validated tool to monitor enterprise performances against specific objectives. Through the choice and the evaluation of strategic Key Performance Indicators (KPIs), it provides a measure of the past company’s outcome and allows planning future managerial strategies. The Fresenius Medical Care (FME) BSC makes use of 30 KPIs for a continuous quality improvement strategy within its dialysis clinics. Each KPI is monthly associated to a score that summarizes the clinic efficiency for that month. Standard statistical methods are currently used to analyze the BSC data and to give a comprehensive view of the corporate improvements to the top management. We herein propose the Self-Organizing Maps (SOMs) as an innovative approach to extrapolate information from the FME BSC data and to present it in an easy-readable informative form. A SOM is a computational technique that allows projecting high-dimensional datasets to a two-dimensional space (map), thus providing a compressed representation. The SOM unsupervised (self-organizing) training procedure results in a map that preserves similarity relations existing in the original dataset; in this way, the information contained in the high-dimensional space can be more easily visualized and understood. The present work demonstrates the effectiveness of the SOM approach in extracting useful information from the 30-dimensional BSC dataset: indeed, SOMs enabled both to highlight expected relationships between the KPIs and to uncover results not predictable with traditional analyses. Hence we suggest SOMs as a reliable complementary approach to the standard methods for BSC interpretation.
Artificial Intelligence in Medicine | 2014
Pablo Escandell-Montero; Milena Chermisi; José María Martínez-Martínez; Juan Gómez-Sanchis; Carlo Barbieri; Emilio Soria-Olivas; Flavio Mari; Joan Vila-Francés; Andrea Stopper; Emanuele Gatti; José David Martín-Guerrero
OBJECTIVE Anemia is a frequent comorbidity in hemodialysis patients that can be successfully treated by administering erythropoiesis-stimulating agents (ESAs). ESAs dosing is currently based on clinical protocols that often do not account for the high inter- and intra-individual variability in the patients response. As a result, the hemoglobin level of some patients oscillates around the target range, which is associated with multiple risks and side-effects. This work proposes a methodology based on reinforcement learning (RL) to optimize ESA therapy. METHODS RL is a data-driven approach for solving sequential decision-making problems that are formulated as Markov decision processes (MDPs). Computing optimal drug administration strategies for chronic diseases is a sequential decision-making problem in which the goal is to find the best sequence of drug doses. MDPs are particularly suitable for modeling these problems due to their ability to capture the uncertainty associated with the outcome of the treatment and the stochastic nature of the underlying process. The RL algorithm employed in the proposed methodology is fitted Q iteration, which stands out for its ability to make an efficient use of data. RESULTS The experiments reported here are based on a computational model that describes the effect of ESAs on the hemoglobin level. The performance of the proposed method is evaluated and compared with the well-known Q-learning algorithm and with a standard protocol. Simulation results show that the performance of Q-learning is substantially lower than FQI and the protocol. When comparing FQI and the protocol, FQI achieves an increment of 27.6% in the proportion of patients that are within the targeted range of hemoglobin during the period of treatment. In addition, the quantity of drug needed is reduced by 5.13%, which indicates a more efficient use of ESAs. CONCLUSION Although prospective validation is required, promising results demonstrate the potential of RL to become an alternative to current protocols.
Computers in Biology and Medicine | 2015
Carlo Barbieri; Flavio Mari; Andrea Stopper; Emanuele Gatti; Pablo Escandell-Montero; José María Martínez-Martínez; José David Martín-Guerrero
Chronic Kidney Disease (CKD) anemia is one of the main common comorbidities in patients undergoing End Stage Renal Disease (ESRD). Iron supplement and especially Erythropoiesis Stimulating Agents (ESA) have become the treatment of choice for that anemia. However, it is very complicated to find an adequate treatment for every patient in each particular situation since dosage guidelines are based on average behaviors, and thus, they do not take into account the particular response to those drugs by different patients, although that response may vary enormously from one patient to another and even for the same patient in different stages of the anemia. This work proposes an advance with respect to previous works that have faced this problem using different methodologies (Machine Learning (ML), among others), since the diversity of the CKD population has been explicitly taken into account in order to produce a general and reliable model for the prediction of ESA/Iron therapy response. Furthermore, the ML model makes use of both human physiology and drug pharmacology to produce a model that outperforms previous approaches, yielding Mean Absolute Errors (MAE) of the Hemoglobin (Hb) prediction around or lower than 0.6 g/dl in the three countries analyzed in the study, namely, Spain, Italy and Portugal.
Computer Methods and Programs in Biomedicine | 2014
José María Martínez-Martínez; Pablo Escandell-Montero; Carlo Barbieri; Emilio Soria-Olivas; Flavio Mari; Marcelino Martínez-Sober; Claudia Amato; Antonio López; Marcello Bassi; Rafael Magdalena-Benedito; Andrea Stopper; José David Martín-Guerrero; Emanuele Gatti
Patients who suffer from chronic renal failure (CRF) tend to suffer from an associated anemia as well. Therefore, it is essential to know the hemoglobin (Hb) levels in these patients. The aim of this paper is to predict the hemoglobin (Hb) value using a database of European hemodialysis patients provided by Fresenius Medical Care (FMC) for improving the treatment of this kind of patients. For the prediction of Hb, both analytical measurements and medication dosage of patients suffering from chronic renal failure (CRF) are used. Two kinds of models were trained, global and local models. In the case of local models, clustering techniques based on hierarchical approaches and the adaptive resonance theory (ART) were used as a first step, and then, a different predictor was used for each obtained cluster. Different global models have been applied to the dataset such as Linear Models, Artificial Neural Networks (ANNs), Support Vector Machines (SVM) and Regression Trees among others. Also a relevance analysis has been carried out for each predictor model, thus finding those features that are most relevant for the given prediction.
Kidney International | 2016
Carlo Barbieri; Manuel Molina; Pedro Ponce; Monika Tothova; Isabella Cattinelli; Jasmine Ion Titapiccolo; Flavio Mari; Claudia Amato; Frank Leipold; Wolfgang Wehmeyer; Stefano Stuard; Andrea Stopper; Bernard Canaud
Managing anemia in hemodialysis patients can be challenging because of competing therapeutic targets and individual variability. Because therapy recommendations provided by a decision support system can benefit both patients and doctors, we evaluated the impact of an artificial intelligence decision support system, the Anemia Control Model (ACM), on anemia outcomes. Based on patient profiles, the ACM was built to recommend suitable erythropoietic-stimulating agent doses. Our retrospective study consisted of a 12-month control phase (standard anemia care), followed by a 12-month observation phase (ACM-guided care) encompassing 752 patients undergoing hemodialysis therapy in 3 NephroCare clinics located in separate countries. The percentage of hemoglobin values on target, the median darbepoetin dose, and individual hemoglobin fluctuation (estimated from the intrapatient hemoglobin standard deviation) were deemed primary outcomes. In the observation phase, median darbepoetin consumption significantly decreased from 0.63 to 0.46 μg/kg/month, whereas on-target hemoglobin values significantly increased from 70.6% to 76.6%, reaching 83.2% when the ACM suggestions were implemented. Moreover, ACM introduction led to a significant decrease in hemoglobin fluctuation (intrapatient standard deviation decreased from 0.95 g/dl to 0.83 g/dl). Thus, ACM support helped improve anemia outcomes of hemodialysis patients, minimizing erythropoietic-stimulating agent use with the potential to reduce the cost of treatment.
Archive | 2014
J. Ion Titapiccolo; Manuela Ferrario; Sergio Cerutti; Carlo Barbieri; Flavio Mari; Emanuele Gatti; Maria Gabriella Signorini
Chronic renal failure (CRF) patients experience a 30% higher risk of cardiovascular (CV) death compared to the general population. In this study data of 3581 incident hemodialysis (HD) patients were considered, i.e. patients who started for the first time the HD treatment. In this work supervised SOM were used with an innovative strategy to built a predictive model to estimate the probability that incident CRF patients experience a CV event in the second semester after a semester of HD treatment. A feature selection approach based on the minimum redundancy maximum relevance (mRMR) algorithm, was wrapped on the self-organizing maps (SOMs) model and a subset of 17 physiological variables with higher performance capability than the complete set of 39 variables was identified. AUC of the ROC curve of the shrunk model was 67±4%. The obtained model permits to investigate non-linear relationships among features related to an increased CV risk condition.
PLOS ONE | 2016
Mariano Rodriguez; M. Dolores Salmeron; Martin-Malo A; Carlo Barbieri; Flavio Mari; Rafael I. Molina; Pedro Costa; Pedro Aljama
Background In hemodialysis patients, deviations from KDIGO recommended values of individual parameters, phosphate, calcium or parathyroid hormone (PTH), are associated with increased mortality. However, it is widely accepted that these parameters are not regulated independently of each other and that therapy aimed to correct one parameter often modifies the others. The aim of the present study is to quantify the degree of association between parameters of chronic kidney disease and mineral bone disease (CKD-MBD). Methods Data was extracted from a cohort of 1758 adult HD patients between January 2000 and June 2013 obtaining a total of 46.141 records (10 year follow-up). We used an advanced data analysis system called Random Forest (RF) which is based on self-learning procedure with similar axioms to those utilized for the development of artificial intelligence. This new approach is particularly useful when the variables analyzed are closely dependent to each other. Results The analysis revealed a strong association between PTH and phosphate that was superior to that of PTH and Calcium. The classical linear regression analysis between PTH and phosphate shows a correlation coefficient is 0.27, p<0.001, the possibility to predict PTH changes from phosphate modification is marginal. Alternatively, RF assumes that changes in phosphate will cause modifications in other associated variables (calcium and others) that may also affect PTH values. Using RF the correlation coefficient between changes in serum PTH and phosphate is 0.77, p<0.001; thus, the power of prediction is markedly increased. The effect of therapy on biochemical variables was also analyzed using this RF. Conclusion Our results suggest that the analysis of the complex interactions between mineral metabolism parameters in CKD-MBD may demand a more advanced data analysis system such as RF.
PLOS ONE | 2016
Carlo Barbieri; Elena Bolzoni; Flavio Mari; Isabella Cattinelli; Francesco Bellocchio; José D. Martín; Claudia Amato; Andrea Stopper; Emanuele Gatti; Iain C. Macdougall; Stefano Stuard; Bernard Canaud
Anemia management, based on erythropoiesis stimulating agents (ESA) and iron supplementation, has become an increasingly challenging problem in hemodialysis patients. Maintaining hemodialysis patients within narrow hemoglobin targets, preventing cycling outside target, and reducing ESA dosing to prevent adverse outcomes requires considerable attention from caregivers. Anticipation of the long-term response (i.e. at 3 months) to the ESA/iron therapy would be of fundamental importance for planning a successful treatment strategy. To this end, we developed a predictive model designed to support decision-making regarding anemia management in hemodialysis (HD) patients treated in center. An Artificial Neural Network (ANN) algorithm for predicting hemoglobin concentrations three months into the future was developed and evaluated in a retrospective study on a sample population of 1558 HD patients treated with intravenous (IV) darbepoetin alfa, and IV iron (sucrose or gluconate). Model inputs were the last 90 days of patients’ medical history and the subsequent 90 days of darbepoetin/iron prescription. Our model was able to predict individual variation of hemoglobin concentration 3 months in the future with a Mean Absolute Error (MAE) of 0.75 g/dL. Error analysis showed a narrow Gaussian distribution centered in 0 g/dL; a root cause analysis identified intercurrent and/or unpredictable events associated with hospitalization, blood transfusion, and laboratory error or misreported hemoglobin values as the main reasons for large discrepancy between predicted versus observed hemoglobin values. Our ANN predictive model offers a simple and reliable tool applicable in daily clinical practice for predicting the long-term response to ESA/iron therapy of HD patients.
International Journal of Artificial Organs | 2016
Diego Brancaccio; Luca Neri; Francesco Bellocchio; Carlo Barbieri; Claudia Amato; Flavio Mari; Bernard Canaud; Stefano Stuard
Atrial fibrillation (AF) is a frequent clinical complication in dialysis patients, and warfarin therapy represents the most common approach for reducing the risk of stroke in this population. However, current evidence based on observational studies, offer conflicting results, whereas no randomized controlled trials have been carried out so far. Additionally, many clinicians are wary of the possible role of warfarin as vascular calcification inducer and its potential to increase the high risk of bleeding among patients on dialysis. Ideally the most promising therapy would be based on direct inhibitors of factor Ila or Xa; however, at the moment, none of these drugs can be safely prescribed in dialysis patients, because of their potentially dangerous accumulation, and the lack of sufficient experience with apixaban or rivaroxaban, two drugs showing a favorable pharmacokinetic profile in end-stage renal disease. Hence, the use of vitamin K inhibitors is currently the only pharmacological option for stroke prevention in dialysis patients with atrial fibrillation, leaving the clinicians in a management conundrum. This review discusses the trade-offs implicated in warfarin use for this population, the promises of newly developed drugs, the role of dialysis as atrial fibrillation trigger, as well as potential non-pharmacological management options suitable in selected clinical situations.