Carlo Franchetti
University of Florence
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Carlo Franchetti.
Journal of Approximation Theory | 1983
Carlo Franchetti
On presente des resultats relies aux projections sur un hyperplan et on donne des relations entre les normes des projections, la forme de la boule unite et les proprietes metriques des hyperplans
Journal of Approximation Theory | 1986
Carlo Franchetti; E. W. Cheney
Abstract A subset M of a normed linear space X is said to be proximinal if inf m ϵ M ∥ x − m ∥ is attained, for each x ϵ X . If X is embedded in another normed space, Z , a proximinal subset of X may or may not be proximinal in Z . Certain practical problems in multivariate approximation lead us to examine the case when X = C ( S ) and Z = C ( S × T ), where S and T are compact Hausdorff spaces. We characterize the proximinal subspaces of C ( S ) which are proximinal in C ( S × T ) for every T . In another section, a generalization of Mazurs Proximinality Theorem is given. This generalization gives a condition under which a subspace of functions ν ° f is proximinal, when f is held fixed and ν ranges over a proximinal subspace.
Journal of Approximation Theory | 2003
Marco Baronti; Emanuele Casini; Carlo Franchetti
Abstract We give new sharper estimations for the retraction constant in some Banach spaces.
Israel Journal of Mathematics | 2000
Jürgen Appell; Carlo Franchetti; Evgenij M. Semenov
Sharp lower estimates for the Jung constantJ(E) in Banach latticesE satisfying an upperp-estimate and a lowerq-estimate are given. Moreover, the minimal value ofJ(E) with respect to equivalent renormings ofE is calculated inE=Lp,q for finitep andq, as well as in more general spacesE. Finally, a nontrivial estimate for the radiusrLp,∞(A) is obtained forA being a bounded sequence of disjointly supported functions inLp,∞.
Rendiconti Del Seminario Matematico E Fisico Di Milano | 1985
Carlo Franchetti
SuntoFra gli spazi di Banach reali vengono definiti iT-spazi. Tale classe include gli spazi finito-dimensionali e quelli uniformemente lisci. Riguardo alla proprietàT e a proprietà affini vengono discussi alcuni spazi di Banach classici. Sono provate proprietà deiT-spazi riguardo le trasformazioni lipschitziane del disco unitario dello spazio in sè.SummaryWe define theT-spaces among the real Banach spaces. This class includes finite dimensional and uniformly smooth spaces. We discuss some classical Banach spaces with respect theT-property and related properties. We prove some properties of theT-spaces concerning Lipschitz self maps of the unit ball of the space.
Rendiconti Del Seminario Matematico E Fisico Di Milano | 1983
Carlo Franchetti
SommarioScopo di questo lavoro è presentare alcuni recenti risultati sugli insiemi prossiminali negli spazi di Banach.Speciale attenzione è dedicata al caso dello spazio delle funzioni reali continue: in particolare si introducono delle proprietà più forti della prossiminalità che consentono di dimostrare risultati nuovi anche nel caso della semplice prossiminalità.Dato il carattere espositivo del lavoro, non sono in genere riportate le dimostrazioni dei teoremi.SummaryAim of this paper is to present some recent results on proximinal subsets of Banach spaces. The space of real continuous functions is especially considered: in particular some properties which are stronger than proximinality are introduced. By means of these properties some new results are proved also in the case of the usual proximinality.Due to the expository character of this paper the proofs of the theorems are generally omitted.
Journal of Approximation Theory | 1984
Carlo Franchetti; E. W. Cheney
Bulletin of The Australian Mathematical Society | 1992
Carlo Franchetti
Journal of Mathematical Analysis and Applications | 2012
Marco Baronti; Emanuele Casini; Carlo Franchetti
Bollettino Della Unione Matematica Italiana | 2015
Marco Baronti; Carlo Franchetti; Pier Luigi Papini