Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carlo Irace is active.

Publication


Featured researches published by Carlo Irace.


Naunyn-schmiedebergs Archives of Pharmacology | 2005

Hydroxytyrosol, a phenolic compound from virgin olive oil, prevents macrophage activation

Maria Chiara Maiuri; Daniela De Stefano; Paola Di Meglio; Carlo Irace; Maria Savarese; Raffaele Sacchi; Maria Pia Cinelli; Rosa Carnuccio

We investigated the effect of hydroxytyrosol (HT), a phenolic compound from virgin olive oil, on inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) expression in J774 murine macrophages stimulated with lipopolysaccharide (LPS). Incubation of cells with LPS caused an increase in iNOS and COX-2 mRNA and protein level as well as ROS generation, which was prevented by HT. In addition, HT blocked the activation of nuclear factor-κB (NF-κB), signal transducer and activator of transcription-1α (STAT-1α) and interferon regulatory factor-1 (IRF-1). These results, showing that HT down-regulates iNOS and COX-2 gene expression by preventing NF-κB, STAT-1α and IRF-1 activation mediated through LPS-induced ROS generation, suggest that it may represent a non-toxic agent for the control of pro-inflammatory genes.


Organic Letters | 2011

Structure and cytotoxicity of phidianidines A and B: first finding of 1,2,4-oxadiazole system in a marine natural product.

Marianna Carbone; Yan Li; Carlo Irace; Ernesto Mollo; Francesco Castelluccio; Antonio Di Pascale; Guido Cimino; Rita Santamaria; Yue-Wei Guo; Margherita Gavagnin

Two indole alkaloids, phidianidines A (1) and B (2), exhibiting an uncommon 1,2,4-oxadiazole ring linked to the indole system, have been isolated from the marine opisthobranch mollusk Phidiana militaris. The structures of the two metabolites have been elucidated by spectroscopic techniques. Phidianidines exhibit high cytotoxicity against tumor and nontumor mammalian cell lines in in vitro assays.


Journal of Neurochemistry | 2004

HIF‐1α reveals a binding activity to the promoter of iNOS gene after permanent middle cerebral artery occlusion

Carmela Matrone; Giuseppe Pignataro; Pasquale Molinaro; Carlo Irace; Antonella Scorziello; G.F. Di Renzo; Lucio Annunziato

Hypoxia inducible factor (HIF‐1)‐1α is a specific, oxygen‐sensitive protein that regulates the activity of HIF‐1, a transcriptional factor that increases after cerebral ischemia and may either promote or prevent neuronal survival. In this study to determine whether the inducible nitric oxide synthase (iNOS) gene containing the sequence of the hypoxia‐responsive enhancer (HRE) was an HIF‐1 target after cerebral ischemia induced by permanent middle cerebral artery occlusion (pMCAO), electrophoretic mobility shift assay (EMSA) and iNOS western blot analysis were performed in the ischemic core, in the area surrounding the infarct and in the hippocampus ipsilateral and contralateral to the lesion. In addition, both HIF‐1α mRNA and protein expression were examined in the ischemic core, in the area surrounding the ischemic core and in the hippocampus ipsilateral to the insult. Our results revealed that pMCAO up‐regulates iNOS protein in the ischemic core, in the area surrounding the ischemic core and in the hippocampus ipsilateral to the lesion, and that the activation of iNOS expression is mediated by HIF‐1. Moreover, HIF‐1α mRNA and protein levels increased in the ischemic core and in the hippocampus ipsilateral to the lesion compared with the levels obtained in the corresponding areas of sham‐operated controls or in the contralateral hemisphere. Particularly in the area surrounding the ischemic core, HIF‐1α protein accumulated during pMCAO although mRNA did not increase. Our study suggests that the activation of HIF‐1 might be involved in the mechanisms whereby iNOS promotes cell survival and/or death after cerebral ischemia.


Bioconjugate Chemistry | 2012

Cholesterol-Based Nucleolipid-Ruthenium Complex Stabilized by Lipid Aggregates for Antineoplastic Therapy

Luca Simeone; Gaetano Mangiapia; Giuseppe Vitiello; Carlo Irace; Alfredo Colonna; Ornella Ortona; Daniela Montesarchio; Luigi Paduano

A novel ruthenium complex, linked to a cholesterol-containing nucleolipid (named ToThyCholRu), stabilized by lipid aggregates for antineoplastic therapy is presented. In order to retard the degradation kinetics typically observed for several ruthenium-based antineoplastic agents, ToThyCholRu is incorporated into a liposome bilayer formed by POPC. The resulting nanoaggregates contain up to 15% in moles of the ruthenium complex, and are shown to be stable for several weeks. The liposomes host the ruthenium-nucleolipid complex with the metal ion surrounded by POPC lipid headgroups and the steroid moiety inserted in the more external acyl chain region. These ruthenium-containing liposomes are more effective in inhibiting the growth of cancer cells than a model NAMI-A-like ruthenium complex, prepared for a direct evaluation of their anti-proliferative activity. These results introduce new perspectives in the design of innovative transition-metal-based supramolecular systems for anticancer drug vectorization.


PLOS ONE | 2013

High Fat Diet Induces Liver Steatosis and Early Dysregulation of Iron Metabolism in Rats

Rosaria Meli; Giuseppina Mattace Raso; Carlo Irace; Raffaele Simeoli; Antonio Di Pascale; Orlando Paciello; Teresa Bruna Pagano; Antonio Calignano; Alfredo Colonna; Rita Santamaria

This paper is dedicated to the memory of our wonderful colleague Professor Alfredo Colonna, who passed away the same day of its acceptance. Fatty liver accumulation, inflammatory process and insulin resistance appear to be crucial in non-alcoholic fatty liver disease (NAFLD), nevertheless emerging findings pointed an important role also for iron overload. Here, we investigate the molecular mechanisms of hepatic iron metabolism in the onset of steatosis to understand whether its impairment could be an early event of liver inflammatory injury. Rats were fed with control diet or high fat diet (HFD) for 5 or 8 weeks, after which liver morphology, serum lipid profile, transaminases levels and hepatic iron content (HIC), were evaluated. In liver of HFD fed animals an increased time-dependent activity of iron regulatory protein 1 (IRP1) was evidenced, associated with the increase in transferrin receptor-1 (TfR1) expression and ferritin down-regulation. Moreover, ferroportin (FPN-1), the main protein involved in iron export, was down-regulated accordingly with hepcidin increase. These findings were indicative of an increased iron content into hepatocytes, which leads to an increase of harmful free-iron also related to the reduction of hepatic ferritin content. The progressive inflammatory damage was evidenced by the increase of hepatic TNF-α, IL-6 and leptin, in parallel to increased iron content and oxidative stress. The major finding that emerged of this study is the impairment of iron homeostasis in the ongoing and sustaining of liver steatosis, suggesting a strong link between iron metabolism unbalance, inflammatory damage and progression of disease.


Journal of Neurochemistry | 2005

Divergent modulation of iron regulatory proteins and ferritin biosynthesis by hypoxia/reoxygenation in neurons and glial cells

Carlo Irace; Antonella Scorziello; Carmen Maffettone; Giuseppe Pignataro; Carmela Matrone; Annagrazia Adornetto; Rita Santamaria; Lucio Annunziato; Alfredo Colonna

Ferritin, the main iron storage protein, exerts a cytoprotective effect against the iron‐catalyzed production of reactive oxygen species, but its role in brain injury caused by hypoxia/reoxygenation is unclear. Ferritin expression is regulated mainly at post‐transcriptional level by iron regulatory proteins (IRP1 and IRP2) that bind specific RNA sequences (IREs) in the 5′untranslated region of ferritin mRNA. Here, we show that hypoxia decreases IRP1 binding activity in glial cells and enhances it in cortical neurons. These effects were reversed by reoxygenation in both cell types. In glial cells there was an early increase of ferritin synthesis during hypoxia and reoxygenation. Conversely, in cortical neurons, ferritin synthesis increased during the late phase of reoxygenation. Steady‐state analysis of ferritin mRNA levels suggested that ferritin synthesis is regulated mainly post‐transcriptionally by IRPs in glioma cells, both transcriptionally and post‐transcriptionally in type‐1 astrocytes, and mainly at transcriptional level in an IRP‐independent way in neurons. The different regulation of ferritin expression may account for the different vulnerability of neurons and glial cells to the injury elicited by oxygen and glucose deprivation (OGD)/reoxygenation. The greater vulnerability of cortical neurons to hypoxia‐reoxygenation was strongly attenuated by the exogenous administration of ferritin during OGD/reoxygenation, suggesting the possible cytoprotective role exerted by this iron‐segregating protein.


Biomacromolecules | 2013

Anticancer cationic ruthenium nanovectors: From rational molecular design to cellular uptake and bioactivity

Gaetano Mangiapia; Giuseppe Vitiello; Carlo Irace; Rita Santamaria; Alfredo Colonna; Aurel Radulescu; Gerardino D'Errico; Daniela Montesarchio; Luigi Paduano

An efficient drug delivery strategy is presented for novel anticancer amphiphilic ruthenium anionic complexes, based on the formation of stable nanoparticles with the cationic lipid 1,2-dioleyl-3-trimethylammoniumpropane chloride (DOTAP). This strategy is aimed at ensuring high ruthenium content within the formulation, long half-life in physiological media, and enhanced cell uptake. An in-depth microstructural characterization of the aggregates obtained mixing the ruthenium complex and the phospholipid carrier at 50/50 molar ratio is realized by combining a variety of techniques, including dynamic light scattering (DLS), small angle neutron scattering (SANS), neutron reflectivity (NR), electron paramagnetic resonance (EPR), and zeta potential measurements. The in vitro bioactivity profile of the Ru-loaded nanoparticles is investigated on human and non-human cancer cell lines, showing IC(50) values in the low μM range against MCF-7 and WiDr cells, that is, proving to be 10-20-fold more active than AziRu, a previously synthesized NAMI-A analog, used for control. Fluorescence microscopy studies demonstrate that the amphiphilic Ru-complex/DOTAP formulations, added with rhodamine-B, are efficiently and rapidly incorporated in human MCF-7 breast adenocarcinoma cells. The intracellular fate of the amphiphilic Ru-complexes was investigated in the same in vitro model by means of an ad hoc designed fluorescently tagged analog, which exhibited a marked tendency to accumulate within or in proximity of the nuclei.


Chemistry: A European Journal | 2011

Design, Synthesis and Characterisation of Guanosine-Based Amphiphiles

Luca Simeone; Domenico Milano; Lorenzo De Napoli; Carlo Irace; Antonio Di Pascale; Mariangela Boccalon; Paolo Tecilla; Daniela Montesarchio

A small library of sugar-modified guanosine derivatives has been prepared, starting from a common intermediate, fully protected on the nucleobase. Insertion of myristoyl chains and of diverse hydrophilic groups, such as an oligoethylene glycol, an amino acid or a disaccharide chain, connected through in vivo reversible ester linkages, or of a charged functional group provided different examples of amphiphilic guanosine analogues, named G1-G7 herein. All of the sugar-modified derivatives were positive in the potassium picrate test, showing an ability to form G-tetrads. CD spectra demonstrated that, as dilute solutions in CHCl(3), distinctive G-quadruplex systems may be formed, with spatial organisations dependent upon the structural modifications. Two compounds, G1 and G2, proved to be good low-molecular-weight organogelators in polar organic solvents, such as methanol, ethanol and acetonitrile. Ion transportation experiments through phospholipid bilayers were carried out to evaluate their ability to mediate H(+) transportation, with G5 showing the highest activity within the investigated series. Moreover, G3 and G5 exhibited a significant cytotoxic profile against human MCF-7 cancer cells in in vitro bioassays.


Molecular BioSystems | 2011

Nucleolipid nanovectors as molecular carriers for potential applications in drug delivery

Luca Simeone; Gaetano Mangiapia; Carlo Irace; Antonio Di Pascale; Alfredo Colonna; Ornella Ortona; Lorenzo De Napoli; Daniela Montesarchio; Luigi Paduano

Novel thymidine- or uridine-based nucleolipids, containing one hydrophilic oligo(ethylene glycol) chain and one or two oleic acid residues (called ToThy, HoThy and DoHu), have been synthesized with the aim to develop bio-compatible nanocarriers for drug delivery and/or produce pro-drugs. Microstructural characterization of their aggregates has been determined in pure water and in pseudo-physiological conditions through DLS and SANS experiments. In all cases stable vesicles, with mean hydrodynamic radii ranging between 120 nm and 250 nm have been revealed. Biological validation of the nucleolipidic nanocarriers was ensured by evaluation of their toxicological profiles, performed by administration of the nanoaggregates to a panel of different cell lines. ToThy exhibited a weak cytotoxicity and, at high concentration, some ability to interfere with cell viability and/or proliferation. In contrast, DoHu and HoThy exhibited no toxicological relevance, behaving similarly to POPC-based liposomes, widely used for systemic drug delivery. Taken together, these results show nucleolipid-based nanocarriers as finely tunable, multi-functional self-assembling materials of interest for the in vivo transport of biomolecules or drugs.


Journal of Materials Chemistry B | 2015

Cationic liposomes as efficient nanocarriers for the drug delivery of an anticancer cholesterol-based ruthenium complex

Giuseppe Vitiello; Alessandra Luchini; Gerardino D'Errico; Rita Santamaria; Antonella Capuozzo; Carlo Irace; Daniela Montesarchio; Luigi Paduano

Aiming for novel tools for anticancer therapies, a ruthenium complex, covalently linked to a cholesterol-containing nucleolipid and stabilized by co-aggregation with a biocompatible lipid, is here presented. The amphiphilic ruthenium complex, named ToThyCholRu, is intrinsically negatively charged and has been inserted into liposomes formed by the cationic 1,2-dioleyl-3-trimethylammoniumpropane chloride (DOTAP) to hinder the degradation kinetics typically observed for known ruthenium-based antineoplastic agents. The here described nanovectors contain up to 30% in moles of the ruthenium complex and are stable for several weeks. This drug delivery system has been characterized using dynamic light scattering (DLS), small angle neutron scattering (SANS), neutron reflectivity (NR) and electron paramagnetic resonance (EPR) techniques. Fluorescence microscopy, following the incorporation of rhodamine-B within the ruthenium-loaded liposomes, showed fast cellular uptake in human carcinoma cells, with a strong fluorescence accumulation within the cells. The in vitro bioactivity profile revealed an important antiproliferative activity and, most remarkably, the highest ability in ruthenium vectorization measured so far. Cellular morphological changes and DNA fragmentation provided evidence of an apoptosis-inducing activity, in line with several in vitro studies supporting apoptotic events as the main cause for the anticancer properties of ruthenium derivatives. Overall, these data highlighted the crucial role played by the cellular uptake properties in determining the anticancer efficacy of ruthenium-based drugs, showing DOTAP as a very efficient nanocarrier for their stabilization in aqueous media and transport in cells. In vitro bioscreens have shown the high antiproliferative activity of ToThyCholRu-DOTAP liposomes against specific human adenocarcinoma cell types. Furthermore, these formulations have proved to be over 20-fold more effective against MCF-7 and WiDr adenocarcinoma cells with respect to the nude ruthenium complex AziRu we have previously described.

Collaboration


Dive into the Carlo Irace's collaboration.

Top Co-Authors

Avatar

Rita Santamaria

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Daniela Montesarchio

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Alfredo Colonna

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Carmen Maffettone

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Antonio Di Pascale

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Luigi Paduano

Lawrence Livermore National Laboratory

View shared research outputs
Top Co-Authors

Avatar

Antonella Capuozzo

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Domenica Musumeci

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Gaetano Mangiapia

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Maria Concetta Miniaci

University of Naples Federico II

View shared research outputs
Researchain Logo
Decentralizing Knowledge