Carlo Peresson
University of Udine
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Carlo Peresson.
International Journal of Molecular Sciences | 2013
Elisa Petrussa; Enrico Braidot; Marco Zancani; Carlo Peresson; Alberto Bertolini; Sonia Patui; Angelo Vianello
This paper aims at analysing the synthesis of flavonoids, their import and export in plant cell compartments, as well as their involvement in the response to stress, with particular reference to grapevine (Vitis vinifera L.). A multidrug and toxic compound extrusion (MATE) as well as ABC transporters have been demonstrated in the tonoplast of grape berry, where they perform a flavonoid transport. The involvement of a glutathione S-transferase (GST) gene has also been inferred. Recently, a putative flavonoid carrier, similar to mammalian bilitranslocase (BTL), has been identified in both grape berry skin and pulp. In skin the pattern of BTL expression increases from véraison to harvest, while in the pulp its expression reaches the maximum at the early ripening stage. Moreover, the presence of BTL in vascular bundles suggests its participation in long distance transport of flavonoids. In addition, the presence of a vesicular trafficking in plants responsible for flavonoid transport is discussed. Finally, the involvement of flavonoids in the response to stress is described.
Plant Signaling & Behavior | 2008
Enrico Braidot; Marco Zancani; Elisa Petrussa; Carlo Peresson; Alberto Bertolini; Sonia Patui; Francesco Macrì; Angelo Vianello
Flavonoids are a group of secondary metabolites widely distributed in plants that represent a huge portion of the soluble phenolics present in grapevine (Vitis vinifera L.). These compounds play different physiological roles and are often involved in protection against biotic and abiotic stress. Even if the flavonoid biosynthetic pathways have been largely characterized, the mechanisms of their transport and accumulation in cell wall and vacuole are still not completely understood. This review analyses the known mechanisms of flavonoid uptake and accumulation in grapevine, with reference to the transport models and membrane carrier proteins described in other plant species. The effect of different environmental factors on flavonoid biosynthesis and transporters is also discussed.
Biochimica et Biophysica Acta | 2012
Angelo Vianello; Valentino Casolo; Elisa Petrussa; Carlo Peresson; Sonia Patui; Alberto Bertolini; Sabina Passamonti; Enrico Braidot; Marco Zancani
The mitochondrial permeability transition (PT) is a well-recognized phenomenon that allows mitochondria to undergo a sudden increase of permeability to solutes with molecular mass ≤ 1500Da, leading to organelle swelling and structural modifications. The relevance of PT relies on its master role in the manifestation of programmed cell death (PCD). This function is performed by a mega-channel (in some cases inhibited by cyclosporin A) named permeability transition pore (PTP), whose function could derive from the assembly of different mitochondrial proteins. In this paper we examine the distribution and characteristics of PTP in mitochondria of eukaryotic organisms so far investigated in order to draw a hypothesis on the mechanism of its evolution. As a result, we suggest that PTP may have arisen as a new function linked to a multiple molecular exaptation of different mitochondrial proteins, even though they could nevertheless still play their original role. Furthermore, we suggest that the early appearance of PTP could have had a crucial role in the establishment of endosymbiosis in eukaryotic cells, by the coordinated balancing of ATP production by glycolysis (performed by the primary phagocyte) and oxidative phosphorylation (accomplished by the endosymbiont). Indeed, we argue on the possibility that this new energetic equilibrium could have opened the way to the subsequent evolution toward metazoans.
FEBS Journal | 2005
Sabina Passamonti; Alessandra Cocolo; Enrico Braidot; Elisa Petrussa; Carlo Peresson; Nevenka Medic; Francesco Macrì; Angelo Vianello
Bilitranslocase is a rat liver plasma membrane carrier, displaying a high‐affinity binding site for bilirubin. It is competitively inhibited by grape anthocyanins, including aglycones and their mono‐ and di‐glycosylated derivatives. In plant cells, anthocyanins are synthesized in the cytoplasm and then translocated into the central vacuole, by mechanisms yet to be fully characterized. The aim of this work was to determine whether a homologue of rat liver bilitranslocase is expressed in carnation petals, where it might play a role in the membrane transport of anthocyanins. The bromosulfophthalein‐based assay of rat liver bilitranslocase transport activity was implemented in subcellular membrane fractions, leading to the identification of a bromosulfophthalein carrier (KM = 5.3 µm), which is competitively inhibited by cyanidine 3‐glucoside (Ki = 51.6 µm) and mainly noncompetitively by cyanidin (Ki = 88.3 µm). Two antisequence antibodies against bilitranslocase inhibited this carrier. In analogy to liver bilitranslocase, one antibody identified a bilirubin‐binding site (Kd = 1.7 nm) in the carnation carrier. The other antibody identified a high‐affinity binding site for cyanidine 3‐glucoside (Kd = 1.7 µm) on the carnation carrier only, and a high‐affinity bilirubin‐binding site (Kd = 0.33 nm) on the liver carrier only. Immunoblots showed a putative homologue of rat liver bilitranslocase in both plasma membrane and tonoplast fractions, isolated from carnation petals. Furthermore, only epidermal cells were immunolabelled in petal sections examined by microscopy. In conclusion, carnation petals express a homologue of rat liver bilitranslocase, with a putative function in the membrane transport of secondary metabolites.
Journal of Plant Physiology | 2008
Elisa Petrussa; Valentino Casolo; Carlo Peresson; Jana Krajňáková; Francesco Macrì; Angelo Vianello
This report demonstrates that mitochondria isolated from thermogenic Arum spadices possess an ATP-sensitive potassium channel--responsible for electrical potential (DeltaPsi) collapse and mitochondrial swelling--whose characteristics are similar to those previously described in pea and wheat mitochondria. In order to study the relationship between this K(ATP)(+) channel and the uncoupled respiration, linked to thermogenesis, K(+) transport activities were compared with those of mitochondria that were isolated from pea stems, soybean suspension cell cultures and Arum tubers. The channel from Arum spadices is highly active and its major features are (i) potassium flux is performed primarily in an inward-rectifying manner; (ii) the influx of K(+) is associated with a matrix volume increase in both energized and non-energized mitochondria; and (iii) its activity depends on the redox state of electron transport chain (ETC) and oxygen availability. In particular, this paper shows that the K(ATP)(+) channel is inwardly activated in parallel with the alternative oxidase (AO). The activation is linked to an ETC-oxidized state and to high oxygen consumption. The putative role of this K(ATP)(+) channel is discussed in relation to flowering of thermogenic Arum spadices.
Journal of Experimental Botany | 2009
Alberto Bertolini; Carlo Peresson; Elisa Petrussa; Enrico Braidot; Sabina Passamonti; Francesco Macrì; Angelo Vianello
A homologue of the mammalian bilirubin transporter bilitranslocase (BTL) (TCDB 2.A.65.1.1), able to perform an apparent secondary active transport of flavonoids, has previously been found in carnation petals and red grape berries. In the present work, a BTL homologue was also shown in white berries from Vitis vinifera L. cv. Tocai/Friulano, using anti-sequence antibodies specific for rat liver BTL. This transporter, similarly to what found in red grape, was localized in the first layers of the epidermal tissue and in the vascular bundle cells of the mesocarp. In addition, a strong immunochemical reaction was detected in the placental tissue and particularly in peripheral integuments of the seed. The protein was expressed during the last maturation stages in both skin and pulp tissues and exhibited an apparent molecular mass of c. 31 kDa. Furthermore, the transport activity of such a carrier, measured as bromosulphophthalein (BSP) uptake, was detected in berry pulp microsomes, where it was inhibited by specific anti-BTL antibodies. The BTL homologue activity exhibited higher values, for both Km and Vmax, than those found in the red cultivar. Moreover, two non-pigmented flavonoids, such as quercetin (a flavonol) and eriodictyol (a flavanone), inhibited the uptake of BSP in an uncompetitive manner. Such results strengthen the hypothesis that this BTL homologue acts as a carrier involved also in the membrane transport of colourless flavonoids and demonstrate the presence of such a carrier in different organs and tissues.
Plant Science | 2014
Sonia Patui; Luisa Clincon; Carlo Peresson; Marco Zancani; Lanfranco S. Conte; Lorenzo Del Terra; Luciano Navarini; Angelo Vianello; Enrico Braidot
In this paper, lipase activity was characterized in coffee (Coffea arabica L.) seeds to determine its involvement in lipid degradation during germination. The lipase activity, evaluated by a colorimetric method, was already present before imbibition of seeds and was further induced during the germination process. The activity showed a biphasic behaviour, which was similar in seeds either with or without endocarp (parchment), even though the phenomenon showed a delay in the former. The enzymatic activity was inhibited by tetrahydrolipstatin (THL), a selective and irreversible inhibitor of lipases, and by a polyclonal antibody raised against purified alkaline lipase from castor bean. The immunochemical analysis evidenced a protein of ca. 60 kDa, cross-reacting with an anti-lipase antibody, in coffee samples obtained from seeds of both types. Gas chromatographic analyses of free fatty acid (FFA) content confirmed the differences shown in the lipolytic activity of the samples with or without parchment, since FFA levels increased more rapidly in samples without parchment. Finally, the analyses of the antioxidant capacity showed that the presence of parchment was crucial for lowering the oxidation of the lipophylic fraction, being the seeds with parchment less prone to oxidation processes.
Frontiers in Plant Science | 2015
Marco Zancani; Valentino Casolo; Elisa Petrussa; Carlo Peresson; Sonia Patui; Alberto Bertolini; Valentina De Col; Enrico Braidot; Francesco Boscutti; Angelo Vianello
The synthesis of ATP in mitochondria is dependent on a low permeability of the inner membrane. Nevertheless, mitochondria can undergo an increased permeability to solutes, named permeability transition (PT) that is mediated by a permeability transition pore (PTP). PTP opening requires matrix Ca2+ and leads to mitochondrial swelling and release of intramembrane space proteins (e.g., cytochrome c). This feature has been initially observed in mammalian mitochondria and tentatively attributed to some components present either in the outer or inner membrane. Recent works on mammalian mitochondria point to mitochondrial ATP synthase dimers as physical basis for PT, a finding that has been substantiated in yeast and Drosophila mitochondria. In plant mitochondria, swelling and release of proteins have been linked to programmed cell death, but in isolated mitochondria PT has been observed in only a few cases and in plant cell cultures only indirect evidence is available. The possibility that mitochondrial ATP synthase dimers could function as PTP also in plants is discussed here on the basis of the current evidence. Finally, a hypothetical explanation for the origin of PTP is provided in the framework of molecular exaptation.
Mitochondrion | 2003
Marco Zancani; Valentino Casolo; Carlo Peresson; Giorgio Federici; Andrea Urbani; Francesco Macrı̀; Angelo Vianello
Abstract A soluble protein with a molecular mass of 55 kDa has been purified from etiolated pea stem mitochondria. The protein exhibits a Mg2+-requiring PPiase activity, with an optimum at pH 9.0, which is not stimulated by monovalent cations, but inhibited by F−, Ca2+, aminomethylenediphosphate and imidodiphosphate. The protein does not cross-react with polyclonal antibodies raised against vacuolar, mitochondrial or soluble PPiases, respectively. Conversely, it cross-reacts with an antibody for the α/β-subunit of the ATP synthase from beef heart mitochondria. The purified protein has been analyzed by MALDI-TOF mass spectrometry and the results, covering the 30% of assigned sequence, indicate that it corresponds to the β-subunit of the ATP synthase of pea mitochondria. It is suggested that this enzymatic protein may perform a dual function as soluble PPiase or as subunit of the more complex ATP synthase.
FEBS Open Bio | 2015
Antonio Filippi; Elisa Petrussa; Carlo Peresson; Alberto Bertolini; Angelo Vianello; Enrico Braidot
Flavonoids represent one of the most important molecules of plant secondary metabolism, playing many different biochemical and physiological roles. Although their essential role in plant life and human health has been elucidated by many studies, their subcellular transport and accumulation in plant tissues remains unclear. This is due to the absence of a convenient and simple method to monitor their transport. In the present work, we suggest an assay able to followin vivo transport of quercetin, the most abundant flavonoid in plant tissues. This uptake was monitored using 2‐aminoethoxydiphenyl borate (DPBA), a fluorescent probe, in non‐pigmentedVitis vinifera cell cultures.