Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carlo R. Largiadèr is active.

Publication


Featured researches published by Carlo R. Largiadèr.


Proceedings of the Royal Society of London B: Biological Sciences | 2003

Recent habitat fragmentation caused by major roads leads to reduction of gene flow and loss of genetic variability in ground beetles

Irene Keller; Carlo R. Largiadèr

Although habitat fragmentation is suspected to jeopardize the long–term survival of many species, few data are available on its impact on the genetic variability of invertebrates. We assess the genetic population structure of the flightless ground beetle Carabus violaceus L., 1758 in a Swiss forest, which is divided into several fragments by a highway and two main roads. Eight samples were collected from different forest fragments and analysed at six microsatellite loci. The largest genetic differentiation was observed between samples separated by roads and in particular by the highway. The number of roads between sites explained 44% of the variance in pairwise FST estimates, whereas the age of the road and the geographical distance between locations were not significant factors. Furthermore, a comparison of allelic richness showed that the genetic variability in a small forest fragment isolated by the highway was significantly lower than in the rest of the study area. These findings strongly support the hypothesis that large roads are absolute barriers to gene flow in C. violaceus, which may lead to a loss of genetic variability in fragmented populations.


Nature | 2012

Eutrophication causes speciation reversal in whitefish adaptive radiations

Pascal Vonlanthen; David Bittner; Alan G. Hudson; K. A. Young; Rudolf Müller; Bänz Lundsgaard-Hansen; Denis Roy; S. Di Piazza; Carlo R. Largiadèr; Ole Seehausen

Species diversity can be lost through two different but potentially interacting extinction processes: demographic decline and speciation reversal through introgressive hybridization. To investigate the relative contribution of these processes, we analysed historical and contemporary data of replicate whitefish radiations from 17 pre-alpine European lakes and reconstructed changes in genetic species differentiation through time using historical samples. Here we provide evidence that species diversity evolved in response to ecological opportunity, and that eutrophication, by diminishing this opportunity, has driven extinctions through speciation reversal and demographic decline. Across the radiations, the magnitude of eutrophication explains the pattern of species loss and levels of genetic and functional distinctiveness among remaining species. We argue that extinction by speciation reversal may be more widespread than currently appreciated. Preventing such extinctions will require that conservation efforts not only target existing species but identify and protect the ecological and evolutionary processes that generate and maintain species.


Pharmacogenomics | 2011

Dihydropyrimidine dehydrogenase gene as a major predictor of severe 5-fluorouracil toxicity

Ursula Amstutz; Tanja K. Froehlich; Carlo R. Largiadèr

The importance of polymorphisms in the dihydropyrimidine dehydrogenase (DPD) gene (DPYD) for the prediction of severe toxicity in 5-fluorouracil (5-FU) based chemotherapy has been controversially debated. As a key enzyme in the catabolism of 5-FU, DPD is the top candidate for pharmacogenetic studies on 5-FU toxicity, since a reduced DPD activity is thought to result in an increased half-life of the drug, and thus, an increased risk of toxicity. Here, we review the current knowledge on well-known and frequently studied DPYD variants such as the c.1905+1G>A splice site variant, as well as the recent discoveries of important functional variation in the noncoding regions of DPYD. We also outline future directions that are needed to further improve the risk assessment of 5-FU toxicity, in particular with respect to metabolic profiling and in the context of different combination therapeutic regimens, in which 5-FU is used today.


Molecular Ecology | 2003

The city-fox phenomenon: genetic consequences of a recent colonization of urban habitat

P. Wandeler; Stephan M. Funk; Carlo R. Largiadèr; S. Gloor; U. Breitenmoser

The red fox (Vulpes vulpes) is one of the best‐documented examples of a species that has successfully occupied cities and their suburbs during the last century. The city of Zurich (Switzerland) was colonized by red foxes 15 years ago and the number of recorded individuals has increased steadily since then. Here, we assessed the hypothesis that the fox population within the city of Zurich is isolated from adjacent rural fox populations against the alternative hypothesis that urban habitat acts as a constant sink for rural dispersers. We examined 11 microsatellite loci in 128 foxes from two urban areas, separated by the main river crossing the city, and three adjacent rural areas from the region of Zurich. Mean observed heterozygosity across individuals and the number of detected alleles were lower for foxes collected within the city as compared with their rural conspecifics. Genetic differentiation was significantly lower between rural than between rural and urban populations, and highest value of pairwise FST was recorded between the two urban areas. Our results indicate that the two urban areas were independently founded by a small number of individuals from adjacent rural areas resulting in genetic drift and genetic differentiation between rural and urban fox populations. Population admixture and immigration analysis revealed that urban–rural gene flow was higher than expected from FST statistics. In the five to seven generations since colonization, fox density has dramatically increased. Currently observed levels of migration between urban and rural populations will probably erode genetic differentiation over time.


Molecular Ecology | 2004

Recent habitat fragmentation due to roads can lead to significant genetic differentiation in an abundant flightless ground beetle

Irene Keller; Wolfgang Nentwig; Carlo R. Largiadèr

Although habitat fragmentation is suspected to pose a major threat to biodiversity, its impact on abundant invertebrate species has been little investigated. We assessed the genetic population structure of the flightless ground beetle Abax parallelepipedus in a forest fragmented by two main roads and a highway using five microsatellite loci. We detected low levels of genetic differentiation, which was concordant with the high population densities of 632–1707 individuals/ha estimated with a mark–recapture method. A Mantel test detected a highly significant increase of pairwise FST‐values with the number of roads between sampling locations. As expected, the most pronounced effect of the isolation due to roads was observed in the sample from the smallest fragment (highway exit loop), which was differentiated significantly from most other locations. However, no signs of a recent bottleneck or a loss of genetic variability were detected in this population, indicating a still relatively large effective population size (Ne). Computer simulations confirmed that the observed FST‐values were indeed compatible with a Ne of a few hundred individuals in this fragment, assuming strong or absolute isolation since the construction of the roads. We discuss the implications of our findings for the conservation of abundant but poorly dispersing species in fragmented habitats.


Molecular Phylogenetics and Evolution | 2003

The phylogeographic importance of the Strait of Gibraltar as a gene flow barrier in terrestrial arthropods: a case study with the scorpion Buthus occitanus as model organism

Benjamin Gantenbein; Carlo R. Largiadèr

The phylogenetic relationship between Buthus occitanus populations across the Strait of Gibraltar was investigated using nuclear 18S/ITS-1 DNA sequences and mitochondrial 16S and COI DNA sequences. All analyses showed that the European samples are highly separated from North African samples, and also suggest the existence of three main groups within this species complex, i.e., an European, an Atlas (=Moroccan samples) and a Tell-Atlas group (=Tunisian samples). The European clade was subdivided into three distinct subclades. The application of a previous calibration of the molecular clock of another buthid species suggested that most of the detected mitochondrial DNA lineages including the European lineages are about three times older than the re-opening of the Gibraltar Strait, and consequently, that other and older vicariant events are responsible for the observed phylogeographic structure of this species complex. Concerning the Moroccan samples, a discordance between nuclear and mitochondrial gene markers was observed. The 18S/ITS-1 gene tree could not resolve the phylogenetic relationships among the Moroccan B. occitanus subspecies and the closely related species B. atlantis, whereas mitochondrial genes suggested the co-existence of several old phylogenetic lineages in Morocco. We hypothesized that this difference may be explained by male-biased gene flow and gene conversion at the tandemly repeated 18S/ITS-1 gene regions.


Pharmacogenomics | 2009

Dihydropyrimidine dehydrogenase gene variation and severe 5-fluorouracil toxicity: a haplotype assessment

Ursula Amstutz; Simone Farese; Stefan Aebi; Carlo R. Largiadèr

AIMS The importance of polymorphisms in the dihydropyrimidine dehydrogenase gene (DPYD) for the prediction of severe toxicity in 5-fluorouracil (5-FU)-based chemotherapy is still unclear. This study aims to assess the predictive value of DPYD variation with respect to previously described DPYD variants for 5-FU toxicity. It represents the first analysis of the gene at the haplotype level, also capturing potentially important genetic variation located outside the coding regions of DPYD. MATERIALS & METHODS The entire coding sequence and exon-flanking intronic regions of DPYD were sequenced in 111 cancer patients receiving fluoropyrimidine-based chemotherapy. DPYD haplotypes were inferred and their associations with severe 5-FU toxicity were assessed. RESULTS None of the previously described deleterious variants (IVS14+1G>A, c.2846A>T and c.1679T>G) were detected in 24 patients who experienced severe 5-FU toxicity. A potential association was observed between a haplotype containing three novel intronic polymorphisms (IVS5+18G>A, IVS6+139G>A and IVS9-51T>G) and a synonymous mutation (c.1236G>A), which was observed five- out of eight-times in patients with severe adverse effects. CONCLUSION The association of a haplotype containing no nonsynonymous or splice-site polymorphisms indicates that additional important genetic variation may be located in noncoding gene regions. Furthermore, a comparison with other studies suggests that the relative importance of particular DPYD mutations (IVS14+1G>A and c.2846A>T) for predicting severe 5-FU toxicity differs geographically across Europe.


Lancet Oncology | 2015

Clinical relevance of DPYD variants c.1679T>G, c.1236G>A/HapB3, and c.1601G>A as predictors of severe fluoropyrimidine-associated toxicity: a systematic review and meta-analysis of individual patient data

Didier Meulendijks; Linda M. Henricks; Gabe S. Sonke; Maarten J. Deenen; Tanja K. Froehlich; Ursula Amstutz; Carlo R. Largiadèr; Ba Jennings; Anthony M. Marinaki; Jeremy Sanderson; Zdenek Kleibl; Petra Kleiblova; Matthias Schwab; Ulrich M. Zanger; Claire Palles; Ian Tomlinson; Eva Gross; André B.P. van Kuilenburg; Cornelis J. A. Punt; Miriam Koopman; Jos H. Beijnen; Annemieke Cats; Jan H. M. Schellens

BACKGROUND The best-known cause of intolerance to fluoropyrimidines is dihydropyrimidine dehydrogenase (DPD) deficiency, which can result from deleterious polymorphisms in the gene encoding DPD (DPYD), including DPYD*2A and c.2846A>T. Three other variants-DPYD c.1679T>G, c.1236G>A/HapB3, and c.1601G>A-have been associated with DPD deficiency, but no definitive evidence for the clinical validity of these variants is available. The primary objective of this systematic review and meta-analysis was to assess the clinical validity of c.1679T>G, c.1236G>A/HapB3, and c.1601G>A as predictors of severe fluoropyrimidine-associated toxicity. METHODS We did a systematic review of the literature published before Dec 17, 2014, to identify cohort studies investigating associations between DPYD c.1679T>G, c.1236G>A/HapB3, and c.1601G>A and severe (grade ≥3) fluoropyrimidine-associated toxicity in patients treated with fluoropyrimidines (fluorouracil, capecitabine, or tegafur-uracil as single agents, in combination with other anticancer drugs, or with radiotherapy). Individual patient data were retrieved and analysed in a multivariable analysis to obtain an adjusted relative risk (RR). Effect estimates were pooled by use of a random-effects meta-analysis. The threshold for significance was set at a p value of less than 0·0167 (Bonferroni correction). FINDINGS 7365 patients from eight studies were included in the meta-analysis. DPYD c.1679T>G was significantly associated with fluoropyrimidine-associated toxicity (adjusted RR 4·40, 95% CI 2·08-9·30, p<0·0001), as was c.1236G>A/HapB3 (1·59, 1·29-1·97, p<0·0001). The association between c.1601G>A and fluoropyrimidine-associated toxicity was not significant (adjusted RR 1·52, 95% CI 0·86-2·70, p=0·15). Analysis of individual types of toxicity showed consistent associations of c.1679T>G and c.1236G>A/HapB3 with gastrointestinal toxicity (adjusted RR 5·72, 95% CI 1·40-23·33, p=0·015; and 2·04, 1·49-2·78, p<0·0001, respectively) and haematological toxicity (adjusted RR 9·76, 95% CI 3·03-31·48, p=0·00014; and 2·07, 1·17-3·68, p=0·013, respectively), but not with hand-foot syndrome. DPYD*2A and c.2846A>T were also significantly associated with severe fluoropyrimidine-associated toxicity (adjusted RR 2·85, 95% CI 1·75-4·62, p<0·0001; and 3·02, 2·22-4·10, p<0·0001, respectively). INTERPRETATION DPYD variants c.1679T>G and c.1236G>A/HapB3 are clinically relevant predictors of fluoropyrimidine-associated toxicity. Upfront screening for these variants, in addition to the established variants DPYD*2A and c.2846A>T, is recommended to improve the safety of patients with cancer treated with fluoropyrimidines. FUNDING None.


Journal of Evolutionary Biology | 2009

Divergence along a steep ecological gradient in lake whitefish (Coregonus sp.)

Pascal Vonlanthen; Denis Roy; Alan G. Hudson; Carlo R. Largiadèr; David Bittner; Ole Seehausen

To understand mechanisms structuring diversity in young adaptive radiations, quantitative and unbiased information about genetic and phenotypic diversity is much needed. Here, we present the first in‐depth investigation of whitefish diversity in a Swiss lake, with continuous spawning habitat sampling in both time and space. Our results show a clear cline like pattern in genetics and morphology of populations sampled along an ecological depth gradient in Lake Neuchâtel. Divergent natural selection appears to be involved in shaping this cline given that trait specific PST‐values are significantly higher than FST‐values when comparing populations caught at different depths. These differences also tend to increase with increasing differences in depth, indicating adaptive divergence along a depth gradient, which persists despite considerable gene flow between adjacent demes. It however remains unclear, whether the observed pattern is a result of currently stable selection‐gene flow balance, incipient speciation, or reverse speciation due to anthropogenic habitat alteration causing two formerly divergent species to collapse into a single gene pool.


Molecular Ecology | 2008

Colonization history of the Swiss Rhine basin by the bullhead (Cottus gobio): inference under a Bayesian spatially explicit framework

Samuel Neuenschwander; Carlo R. Largiadèr; Nicolas Ray; Mathias Currat; Pascal Vonlanthen; Laurent Excoffier

The present distribution of freshwater fish in the Alpine region has been strongly affected by colonization events occurring after the last glacial maximum (LGM), some 20 000 years ago. We use here a spatially explicit simulation framework to model and better understand their colonization dynamics in the Swiss Rhine basin. This approach is applied to the European bullhead (Cottus gobio), which is an ideal model organism to study fish past demographic processes since it has not been managed by humans. The molecular diversity of eight sampled populations is simulated and compared to observed data at six microsatellite loci under an approximate Bayesian computation framework to estimate the parameters of the colonization process. Our demographic estimates fit well with current knowledge about the biology of this species, but they suggest that the Swiss Rhine basin was colonized very recently, after the Younger Dryas some 6600 years ago. We discuss the implication of this result, as well as the strengths and limits of the spatially explicit approach coupled to the approximate Bayesian computation framework.

Collaboration


Dive into the Carlo R. Largiadèr's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Laurent Excoffier

Swiss Institute of Bioinformatics

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Markus Joerger

University of St. Gallen

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alexis Champigneulle

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Irene Keller

Swiss Institute of Bioinformatics

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge