Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carlo Rondinini is active.

Publication


Featured researches published by Carlo Rondinini.


Science | 2014

A mid-term analysis of progress toward international biodiversity targets

Derek P. Tittensor; Matt Walpole; Samantha L. L. Hill; Daniel G. Boyce; Gregory L. Britten; Neil D. Burgess; Stuart H. M. Butchart; Paul W. Leadley; Eugenie C. Regan; Rob Alkemade; Roswitha Baumung; Céline Bellard; Lex Bouwman; Nadine Bowles-Newark; Anna M. Chenery; William W. L. Cheung; Villy Christensen; H. David Cooper; Annabel R. Crowther; Matthew J. R. Dixon; Alessandro Galli; Valérie Gaveau; Richard D. Gregory; Nicolás L. Gutiérrez; Tim Hirsch; Robert Höft; Stephanie R. Januchowski-Hartley; Marion Karmann; Cornelia B. Krug; Fiona Leverington

In 2010, the international community, under the auspices of the Convention on Biological Diversity, agreed on 20 biodiversity-related “Aichi Targets” to be achieved within a decade. We provide a comprehensive mid-term assessment of progress toward these global targets using 55 indicator data sets. We projected indicator trends to 2020 using an adaptive statistical framework that incorporated the specific properties of individual time series. On current trajectories, results suggest that despite accelerating policy and management responses to the biodiversity crisis, the impacts of these efforts are unlikely to be reflected in improved trends in the state of biodiversity by 2020. We highlight areas of societal endeavor requiring additional efforts to achieve the Aichi Targets, and provide a baseline against which to assess future progress. Although conservation efforts are accelerating, their impact is unlikely to improve the global state of biodiversity by 2020. Indicators of progress and decline The targets set by the Convention on Biological Diversity in 2010 focused international efforts to alleviate global biodiversity decline. However, many of the consequences of these efforts will not be evident by the 2020 deadline agreed to by governments of 150 countries. Tittensor et al. analyzed data on 55 different biodiversity indicators to predict progress toward the 2020 targets—indicators such as protected area coverage, land-use trends, and endangered species status. The analysis pinpoints the problems and areas that will need the most attention in the next few years. Science, this issue p. 241


PLOS Biology | 2007

Conserving biodiversity efficiently: What to Do, Where, and When

Kerrie A. Wilson; Emma C. Underwood; Scott A. Morrison; Kirk R. Klausmeyer; William W. Murdoch; Belinda Reyers; Grant Wardell-Johnson; Pablo A. Marquet; Phil W Rundel; Marissa F. McBride; Robert L. Pressey; Michael Bode; Jon Hoekstra; Sandy Andelman; Michael Looker; Carlo Rondinini; Peter Kareiva; M. Rebecca Shaw; Hugh P. Possingham

Conservation priority-setting schemes have not yet combined geographic priorities with a framework that can guide the allocation of funds among alternate conservation actions that address specific threats. We develop such a framework, and apply it to 17 of the worlds 39 Mediterranean ecoregions. This framework offers an improvement over approaches that only focus on land purchase or species richness and do not account for threats. We discover that one could protect many more plant and vertebrate species by investing in a sequence of conservation actions targeted towards specific threats, such as invasive species control, land acquisition, and off-reserve management, than by relying solely on acquiring land for protected areas. Applying this new framework will ensure investment in actions that provide the most cost-effective outcomes for biodiversity conservation. This will help to minimise the misallocation of scarce conservation resources.


PLOS Biology | 2014

Targeting global protected area expansion for imperiled biodiversity.

Oscar Venter; Richard A. Fuller; Daniel B. Segan; Josie Carwardine; Thomas M. Brooks; Stuart H. M. Butchart; Moreno Di Marco; Takuya Iwamura; Liana N. Joseph; Damien O'Grady; Hugh P. Possingham; Carlo Rondinini; Robert J. Smith; Michelle Venter; James E. M. Watson

Meeting international targets for expanding protected areas could simultaneously contribute to species conservation, but only if the distribution of threatened species informs the future establishment of protected areas.


Science | 2016

The broad footprint of climate change from genes to biomes to people

Brett R. Scheffers; Luc De Meester; Tom C. L. Bridge; Ary A. Hoffmann; John M. Pandolfi; Richard T. Corlett; Stuart H. M. Butchart; Paul Pearce-Kelly; Kit M. Kovacs; David Dudgeon; Michela Pacifici; Carlo Rondinini; Wendy B. Foden; Tara G. Martin; Camilo Mora; David Bickford; James E. M. Watson

Accumulating impacts Anthropogenic climate change is now in full swing, our global average temperature already having increased by 1°C from preindustrial levels. Many studies have documented individual impacts of the changing climate that are particular to species or regions, but individual impacts are accumulating and being amplified more broadly. Scheffers et al. review the set of impacts that have been observed across genes, species, and ecosystems to reveal a world already undergoing substantial change. Understanding the causes, consequences, and potential mitigation of these changes will be essential as we move forward into a warming world. Science, this issue p. 10.1126/science.aaf7671 BACKGROUND Climate change impacts have now been documented across every ecosystem on Earth, despite an average warming of only ~1°C so far. Here, we describe the full range and scale of climate change effects on global biodiversity that have been observed in natural systems. To do this, we identify a set of core ecological processes (32 in terrestrial and 31 each in marine and freshwater ecosystems) that underpin ecosystem functioning and support services to people. Of the 94 processes considered, 82% show evidence of impact from climate change in the peer-reviewed literature. Examples of observed impacts from meta-analyses and case studies go beyond well-established shifts in species ranges and changes to phenology and population dynamics to include disruptions that scale from the gene to the ecosystem. ADVANCES Species are undergoing evolutionary adaptation to temperature extremes, and climate change has substantial impacts on species physiology that include changes in tolerances to high temperatures, shifts in sex ratios in species with temperature-dependent sex determination, and increased metabolic costs of living in a warmer world. These physiological adjustments have observable impacts on morphology, with many species in both aquatic and terrestrial systems shrinking in body size because large surface-to-volume ratios are generally favored under warmer conditions. Other morphological changes include reductions in melanism to improve thermoregulation, and altered wing and bill length in birds. Broader-scale responses to climate change include changes in the phenology, abundance, and distribution of species. Temperate plants are budding and flowering earlier in spring and later in autumn. Comparable adjustments have been observed in marine and freshwater fish spawning events and in the timing of seasonal migrations of animals worldwide. Changes in the abundance and age structure of populations have also been observed, with widespread evidence of range expansion in warm-adapted species and range contraction in cold-adapted species. As a by-product of species redistributions, novel community interactions have emerged. Tropical and boreal species are increasingly incorporated into temperate and polar communities, respectively, and when possible, lowland species are increasingly assimilating into mountain communities. Multiplicative impacts from gene to community levels scale up to produce ecological regime shifts, in which one ecosystem state shifts to an alternative state. OUTLOOK The many observed impacts of climate change at different levels of biological organization point toward an increasingly unpredictable future for humans. Reduced genetic diversity in crops, inconsistent crop yields, decreased productivity in fisheries from reduced body size, and decreased fruit yields from fewer winter chill events threaten food security. Changes in the distribution of disease vectors alongside the emergence of novel pathogens and pests are a direct threat to human health as well as to crops, timber, and livestock resources. Humanity depends on intact, functioning ecosystems for a range of goods and services. Enhanced understanding of the observed impacts of climate change on core ecological processes is an essential first step to adapting to them and mitigating their influence on biodiversity and ecosystem service provision. Climate change impacts on ecological processes in marine, freshwater, and terrestrial ecosystems. Impacts can be measured on multiple processes at different levels of biological organization within ecosystems. In total, 82% of 94 ecological processes show evidence of being affected by climate change. Within levels of organization, the percentage of processes impacted varies from 60% for genetics to 100% for species distribution. Most ecological processes now show responses to anthropogenic climate change. In terrestrial, freshwater, and marine ecosystems, species are changing genetically, physiologically, morphologically, and phenologically and are shifting their distributions, which affects food webs and results in new interactions. Disruptions scale from the gene to the ecosystem and have documented consequences for people, including unpredictable fisheries and crop yields, loss of genetic diversity in wild crop varieties, and increasing impacts of pests and diseases. In addition to the more easily observed changes, such as shifts in flowering phenology, we argue that many hidden dynamics, such as genetic changes, are also taking place. Understanding shifts in ecological processes can guide human adaptation strategies. In addition to reducing greenhouse gases, climate action and policy must therefore focus equally on strategies that safeguard biodiversity and ecosystems.


Philosophical Transactions of the Royal Society B | 2011

Future hotspots of terrestrial mammal loss.

Piero Visconti; Robert L. Pressey; Daniele Giorgini; Luigi Maiorano; Michel Bakkenes; Luigi Boitani; Rob Alkemade; Alessandra Falcucci; Federica Chiozza; Carlo Rondinini

Current levels of endangerment and historical trends of species and habitats are the main criteria used to direct conservation efforts globally. Estimates of future declines, which might indicate different priorities than past declines, have been limited by the lack of appropriate data and models. Given that much of conservation is about anticipating and responding to future threats, our inability to look forward at a global scale has been a major constraint on effective action. Here, we assess the geography and extent of projected future changes in suitable habitat for terrestrial mammals within their present ranges. We used a global earth-system model, IMAGE, coupled with fine-scale habitat suitability models and parametrized according to four global scenarios of human development. We identified the most affected countries by 2050 for each scenario, assuming that no additional conservation actions other than those described in the scenarios take place. We found that, with some exceptions, most of the countries with the largest predicted losses of suitable habitat for mammals are in Africa and the Americas. African and North American countries were also predicted to host the most species with large proportional global declines. Most of the countries we identified as future hotspots of terrestrial mammal loss have little or no overlap with the present global conservation priorities, thus confirming the need for forward-looking analyses in conservation priority setting. The expected growth in human populations and consumption in hotspots of future mammal loss mean that local conservation actions such as protected areas might not be sufficient to mitigate losses. Other policies, directed towards the root causes of biodiversity loss, are required, both in Africa and other parts of the world.


Philosophical Transactions of the Royal Society B | 2011

The future of terrestrial mammals in the Mediterranean basin under climate change

Luigi Maiorano; Alessandra Falcucci; Niklaus E. Zimmermann; Achilleas Psomas; Julien Pottier; Daniele Baisero; Carlo Rondinini; Antoine Guisan; Luigi Boitani

The Mediterranean basin is considered a hotspot of biological diversity with a long history of modification of natural ecosystems by human activities, and is one of the regions that will face extensive changes in climate. For 181 terrestrial mammals (68% of all Mediterranean mammals), we used an ensemble forecasting approach to model the future (approx. 2100) potential distribution under climate change considering five climate change model outputs for two climate scenarios. Overall, a substantial number of Mediterranean mammals will be severely threatened by future climate change, particularly endemic species. Moreover, we found important changes in potential species richness owing to climate change, with some areas (e.g. montane region in central Italy) gaining species, while most of the region will be losing species (mainly Spain and North Africa). Existing protected areas (PAs) will probably be strongly influenced by climate change, with most PAs in Africa, the Middle East and Spain losing a substantial number of species, and those PAs gaining species (e.g. central Italy and southern France) will experience a substantial shift in species composition.


Philosophical Transactions of the Royal Society B | 2011

What spatial data do we need to develop global mammal conservation strategies

Luigi Boitani; Luigi Maiorano; Daniele Baisero; Alessandra Falcucci; Piero Visconti; Carlo Rondinini

Spatial data on species distributions are available in two main forms, point locations and distribution maps (polygon ranges and grids). The first are often temporally and spatially biased, and too discontinuous, to be useful (untransformed) in spatial analyses. A variety of modelling approaches are used to transform point locations into maps. We discuss the attributes that point location data and distribution maps must satisfy in order to be useful in conservation planning. We recommend that before point location data are used to produce and/or evaluate distribution models, the dataset should be assessed under a set of criteria, including sample size, age of data, environmental/geographical coverage, independence, accuracy, time relevance and (often forgotten) representation of areas of permanent and natural presence of the species. Distribution maps must satisfy additional attributes if used for conservation analyses and strategies, including minimizing commission and omission errors, credibility of the source/assessors and availability for public screening. We review currently available databases for mammals globally and show that they are highly variable in complying with these attributes. The heterogeneity and weakness of spatial data seriously constrain their utility to global and also sub-global scale conservation analyses.


Methods in Ecology and Evolution | 2014

Imputation of missing data in life‐history trait datasets: which approach performs the best?

Caterina Penone; Ana D. Davidson; Kevin T. Shoemaker; Moreno Di Marco; Carlo Rondinini; Thomas M. Brooks; Bruce E. Young; Catherine H. Graham; Gabriel C. Costa

1. Despite efforts in data collection, missing values are commonplace in life-history trait databases. Because these values typically are not missing randomly, the common practice of removingmissing data not only reduces sample size, but also introduces bias that can lead to incorrect conclusions. Imputingmissing values is a potential solution to this problem. Here, we evaluate the performance of four approaches for estimating missing values in trait databases (K-nearest neighbour (kNN), multivariate imputation by chained equations (mice), missForest and Phylopars), and testwhether imputed datasets retain underlying allometric relationships among traits. 2. Starting with a nearly complete trait dataset on the mammalian order Carnivora (using four traits), we artificially removed values so that the percent ofmissing values ranged from 10% to 80%. Using the original values as a reference, we assessed imputation performance using normalized root mean squared error.We also evaluated whether including phylogenetic information improved imputation performance in kNN, mice, and missForest (it is a required input in Phylopars). Finally, we evaluated the extent to which the allometric relationship between two traits (body mass and longevity) was conserved for imputed datasets by looking at the difference (bias) between the slope of the original and the imputed datasets or datasets with missing values removed. 3. Three of the tested approaches (mice, missForest and Phylopars), resulted in qualitatively equivalent imputation performance, and all had significantly lower errors than kNN. Adding phylogenetic information into the imputation algorithms improved estimation of missing values for all tested traits. The allometric relationship between body mass and longevity was conserved when up to 60% of data were missing, either with or without phylogenetic information, depending on the approach. This relationship was less biased in imputed datasets compared to datasets withmissing values removed, especially whenmore than 30%of values weremissing. 4. Imputations provide valuable alternatives to removing missing observations in trait databases as they produce low errors and retain relationships among traits. Although we must continue to prioritize data collection on species traits, imputations can provide a valuable solution for conducting macroecological and evolutionary studies using life-history trait databases.


Philosophical Transactions of the Royal Society B | 2011

Prioritizing conservation investments for mammal species globally

Kerrie A. Wilson; Megan C. Evans; Moreno Di Marco; David C. Green; Luigi Boitani; Hugh P. Possingham; Federica Chiozza; Carlo Rondinini

We need to set priorities for conservation because we cannot do everything, everywhere, at the same time. We determined priority areas for investment in threat abatement actions, in both a cost-effective and spatially and temporally explicit way, for the threatened mammals of the world. Our analysis presents the first fine-resolution prioritization analysis for mammals at a global scale that accounts for the risk of habitat loss, the actions required to abate this risk, the costs of these actions and the likelihood of investment success. We evaluated the likelihood of success of investments using information on the past frequency and duration of legislative effectiveness at a country scale. The establishment of new protected areas was the action receiving the greatest investment, while restoration was never chosen. The resolution of the analysis and the incorporation of likelihood of success made little difference to this result, but affected the spatial location of these investments.


PLOS ONE | 2016

Assessing the Cost of Global Biodiversity and Conservation Knowledge

Diego Juffe-Bignoli; Thomas M. Brooks; Stuart H. M. Butchart; R. K. B. Jenkins; Kaia Boe; Michael R. Hoffmann; Ariadne Angulo; Steve P. Bachman; Monika Böhm; Neil Brummitt; Kent E. Carpenter; Pat J. Comer; Neil A. Cox; Annabelle Cuttelod; William Darwall; Moreno Di Marco; Lincoln D. C. Fishpool; Bárbara Goettsch; Melanie Heath; Craig Hilton-Taylor; Jon Hutton; Tim Johnson; Ackbar Joolia; David A. Keith; Penny F. Langhammer; Jennifer Luedtke; Eimear Nic Lughadha; Maiko Lutz; Ian May; Rebecca M. Miller

Knowledge products comprise assessments of authoritative information supported by standards, governance, quality control, data, tools, and capacity building mechanisms. Considerable resources are dedicated to developing and maintaining knowledge products for biodiversity conservation, and they are widely used to inform policy and advise decision makers and practitioners. However, the financial cost of delivering this information is largely undocumented. We evaluated the costs and funding sources for developing and maintaining four global biodiversity and conservation knowledge products: The IUCN Red List of Threatened Species, the IUCN Red List of Ecosystems, Protected Planet, and the World Database of Key Biodiversity Areas. These are secondary data sets, built on primary data collected by extensive networks of expert contributors worldwide. We estimate that US

Collaboration


Dive into the Carlo Rondinini's collaboration.

Top Co-Authors

Avatar

Luigi Boitani

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Piero Visconti

Zoological Society of London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Luigi Maiorano

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Luca Santini

Radboud University Nijmegen

View shared research outputs
Top Co-Authors

Avatar

Thomas M. Brooks

International Union for Conservation of Nature and Natural Resources

View shared research outputs
Top Co-Authors

Avatar

Michela Pacifici

International Union for Conservation of Nature and Natural Resources

View shared research outputs
Top Co-Authors

Avatar

Daniele Baisero

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Federica Chiozza

Sapienza University of Rome

View shared research outputs
Researchain Logo
Decentralizing Knowledge