Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carlo Rondinoni is active.

Publication


Featured researches published by Carlo Rondinoni.


NeuroImage | 2010

From EEG to BOLD: Brain mapping and estimating transfer functions in simultaneous EEG-fMRI acquisitions

João Ricardo Sato; Carlo Rondinoni; Marcio J. Sturzbecher; Draulio B. de Araujo; Edson Amaro

Simultaneous acquisition of electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) aims to disentangle the description of brain processes by exploiting the advantages of each technique. Most studies in this field focus on exploring the relationships between fMRI signals and the power spectrum at some specific frequency bands (alpha, beta, etc.). On the other hand, brain mapping of EEG signals (e.g., interictal spikes in epileptic patients) usually assumes an haemodynamic response function for a parametric analysis applying the GLM, as a rough approximation. The integration of the information provided by the high spatial resolution of MR images and the high temporal resolution of EEG may be improved by referencing them by transfer functions, which allows the identification of neural driven areas without strong assumptions about haemodynamic response shapes or brain haemodynamics homogeneity. The difference on sampling rate is the first obstacle for a full integration of EEG and fMRI information. Moreover, a parametric specification of a function representing the commonalities of both signals is not established. In this study, we introduce a new data-driven method for estimating the transfer function from EEG signal to fMRI signal at EEG sampling rate. This approach avoids EEG subsampling to fMRI time resolution and naturally provides a test for EEG predictive power over BOLD signal fluctuations, in a well-established statistical framework. We illustrate this concept in resting state (eyes closed) and visual simultaneous fMRI-EEG experiments. The results point out that it is possible to predict the BOLD fluctuations in occipital cortex by using EEG measurements.


BMC Neurology | 2015

Using network dynamic fMRI for detection of epileptogenic foci.

Sanja Nedic; Steven M. Stufflebeam; Carlo Rondinoni; Tonicarlo Rodrigues Velasco; Antonio C. Santos; João Pereira Leite; Ana Carolina Gargaro; Lilianne R. Mujica-Parodi; Jaime S. Ide

BackgroundEpilepsy is one of the most prevalent neurological disorders. It remains medically intractable for about one-third of patients with focal epilepsy, for whom precise localization of the epileptogenic zone responsible for seizure initiation may be critical for successful surgery. Existing fMRI literature points to widespread network disturbances in functional connectivity. Per previous scalp and intracranial EEG studies and consistent with excessive local synchronization during interictal discharges, we hypothesized that, relative to same regions in healthy controls, epileptogenic foci would exhibit less chaotic dynamics, identifiable via entropic analyses of resting state fMRI time series.MethodsIn order to first validate this hypothesis on a cohort of patients with known ground truth, here we test individuals with well-defined epileptogenic foci (left mesial temporal lobe epilepsy). We analyzed voxel-wise resting-state fMRI time-series using the autocorrelation function (ACF), an entropic measure of regulation and feedback, and performed follow-up seed-to-voxel functional connectivity analysis. Disruptions in connectivity of the region exhibiting abnormal dynamics were examined in relation to duration of epilepsy and patients’ cognitive performance using a delayed verbal memory recall task.ResultsACF analysis revealed constrained (less chaotic) functional dynamics in left temporal lobe epilepsy patients, primarily localized to ipsilateral temporal pole, proximal to presumed focal points. Autocorrelation decay rates differentiated, with 100 % accuracy, between patients and healthy controls on a subject-by-subject basis within a leave-one-subject out classification framework. Regions identified via ACF analysis formed a less efficient network in patients, as compared to controls. Constrained dynamics were linked with locally increased and long-range decreased connectivity that, in turn, correlated significantly with impaired memory (local left temporal connectivity) and epilepsy duration (left temporal – posterior cingulate cortex connectivity).ConclusionsOur current results suggest that data driven functional MRI methods that target network dynamics hold promise in providing clinically valuable tools for identification of epileptic regions.


Brazilian Journal of Medical and Biological Research | 2013

Effect of scanner acoustic background noise on strict resting-state fMRI

Carlo Rondinoni; Edson Amaro; Fernando Cendes; A.C.dos Santos; Carlos Ernesto Garrido Salmon

Functional MRI (fMRI) resting-state experiments are aimed at identifying brain networks that support basal brain function. Although most investigators consider a ‘resting-state’ fMRI experiment with no specific external stimulation, subjects are unavoidably under heavy acoustic noise produced by the equipment. In the present study, we evaluated the influence of auditory input on the resting-state networks (RSNs). Twenty-two healthy subjects were scanned using two similar echo-planar imaging sequences in the same 3T MRI scanner: a default pulse sequence and a reduced “silent” pulse sequence. Experimental sessions consisted of two consecutive 7-min runs with noise conditions (default or silent) counterbalanced across subjects. A self-organizing group independent component analysis was applied to fMRI data in order to recognize the RSNs. The insula, left middle frontal gyrus and right precentral and left inferior parietal lobules showed significant differences in the voxel-wise comparison between RSNs depending on noise condition. In the presence of low-level noise, these areas Granger-cause oscillations in RSNs with cognitive implications (dorsal attention and entorhinal), while during high noise acquisition, these connectivities are reduced or inverted. Applying low noise MR acquisitions in research may allow the detection of subtle differences of the RSNs, with implications in experimental planning for resting-state studies, data analysis, and ergonomic factors.


Behavioural Brain Research | 2016

Behavioral and neuroimaging responses induced by mental imagery of threatening scenarios

Rosana Shuhama; Carlo Rondinoni; Draulio B. de Araujo; Antonio Carlos dos Santos; Frederico G. Graeff; Cristina Marta Del-Ben

Functional neuroimaging studies have shown that actual situations of uncertain or distant threats increase the activity of forebrain regions, whereas proximal threats increase the activity of the dorsal midbrain. This experiment aimed at testing the hypothesis that brain activity elicited by imagined scenarios of threats with two different magnitudes, potential and imminent, resembles that found in response to actual threats. First, we measured subjective responses to imagined scenarios of potential and imminent threats compared with neutral and pleasant scenarios. The same scenarios were used as a paradigm in a functional magnetic resonance imaging experiment. Behavioral results show that the scenarios draw a gradient of hedonic valence and arousal dimensions. Both potential and imminent threat scenarios increased subjective anxiety; the imminent threat scenario also increased feelings of discomfort and bodily symptoms. The functional magnetic resonance imaging results revealed modulations of BOLD signal in the ventromedial prefrontal cortex by potential threat and in the periaqueductal gray matter by imminent threat. These results agree with previously reported evidence using actual threat situations, indicating that mental imagery is a reliable method for studying the functional neuroanatomy of relevant behavioral processes.


international conference on e-health networking, applications and services | 2014

Inter-institutional protocol describing the use of three-dimensional printing for surgical planning in a patient with childhood epilepsy: From 3D modeling to neuronavigation

Carlo Rondinoni; Victor Hugo Souza; Renan Hiroshi Matsuda; Andre Cunha Peres Salles; Marcelo Volpon Santos; Oswaldo Baffa Filho; Antonio Carlos dos Santos; Hélio Rubens Machado; Pedro Yoshito Noritomi; Jorge Vicente Lopes da Silva

This study is the first step in an effort to develop three-dimensional (3D) printing for use in pediatric surgical planning. In order to accomplish this, we established an effective collaboration between Ribeirao Preto Clinics Hospital (HCRP) and Renato Archer Center for Information Technology (CTI). Printed biomodels can be used to support discussions, decision-making, and neuronavigation before surgery. The main purpose of 3D printing for specific case handling is to reduce damage by enhancing knowledge of orientation during surgical planning and personnel training before surgery. Here, we produced an object that represented the brain and face segment of a patient via additive manufacturing technology based on magnetic resonance imaging (MRI) data. Specific landmarks were measured by three distinct methods: manual caliper, an InVesalius software measurement tool, and neuronavigation coordinate detection. The mean coefficient of variation was 7.17% between all methods and landmarks measured. Our results validate the combined use of biomodels with InVesalius software tools for the assessment of individual brain anatomy facilitating manual handling and visualization of 3D models. The establishment of communication protocols between the teams involved, as well as navigation protocols for quality control, presents the possibility of developing long term training programs, and promotes the congregation of individuals from research areas in Medical Physics, Medical Sciences, and Neuroscience.


Neuroscience Letters | 2013

Auditory stimuli from a sensor glove model modulate cortical audiotactile integration

Raquel Metzker Mendes; Rafael Inácio Barbosa; Carlos Ernesto Garrido Salmon; Carlo Rondinoni; Sara Escorsi-Rosset; Juliana Carla Delsim; Cláudio Henrique Barbieri; Nilton Mazzer

The purpose of this study was to shed light on cortical audiotactile integration and sensory substitution mechanisms, thought to serve as a basis for the use of a sensor glove in the preservation of the cortical map of the hand after peripheral nerve injuries. Fourteen subjects were selected and randomly assigned either to a training group, trained to replace touch for hearing with the use of a sensor glove, or to a control group, untrained. Training group volunteers had to identify textures just by the sound. In an fMRI experiment, all subjects received three types of stimuli: tactile only, combined audiotactile stimulation, and auditory only. Results indicate that, for trained subjects, a coupling between auditory and somatosensory cortical areas is established through associative areas. Differences in signal correlation between groups point to a pairing mechanism, which, at first, connects functionally the primary auditory and sensory areas (trained subjects). Later, this connection seems to be mediated by associative areas. The training with the sensor glove influences cortical audiotactile integration mechanisms, determining BOLD signal changes in the somatosensory area during auditory stimulation.


NeuroImage: Clinical | 2017

Neuro-degeneration profile of Alzheimer's patients: A brain morphometry study

Silvio Ramos Bernardes da Silva Filho; Jeam Haroldo Oliveira Barbosa; Carlo Rondinoni; Antonio Carlos dos Santos; Carlos Ernesto Garrido Salmon; Nereida Kilza da Costa Lima; Eduardo Ferriolli; Julio C. Moriguti

Introduction Alzheimers disease (AD) is a primary and progressive neurodegenerative disorder, which is marked by cognitive deterioration and memory impairment. Atrophy of hippocampus and other basal brain regions is one of the most predominant structural imaging findings related to AD. Most studies have evaluated the pre-clinical and initial stages of AD through clinical trials using Magnetic Resonance Imaging. Structural biomarkers for advanced AD stages have not been evaluated yet, being considered only hypothetically. Objective To evaluate the brain morphometry of AD patients at all disease stages, identifying the structural neuro-degeneration profile associated with AD severity. Material and methods AD patients aged 60 years or over at different AD stages were recruited and grouped into three groups following the Clinical Dementia Rating (CDR) score: CDR1 (n = 16), CDR2 (n = 15), CDR3 (n = 13). Age paired healthy volunteers (n = 16) were also recruited (control group). Brain images were acquired on a 3T magnetic resonance scanner using a conventional Gradient eco 3D T1-w sequence without contrast injection. Volumetric quantitative data and cortical thickness were obtained by automatic segmentation using the Freesurfer software. Volume of each brain region was normalized by the whole brain volume in order to minimize age and body size effects. Volume and cortical thickness variations among groups were compared. Results Atrophy was observed in the hippocampus, amygdala, entorhinal cortex, parahippocampal region, temporal pole and temporal lobe of patients suffering from AD at any stage. Cortical thickness was reduced only in the parahippocampal gyrus at all disease stages. Volume and cortical thickness were correlated with the Mini Mental State Examination (MMSE) score in all studied regions, as well as with CDR and disease duration. Discussion and conclusion As previously reported, brain regions affected by AD during its initial stages, such as hippocampus, amygdala, entorhinal cortex, and parahippocampal region, were found to be altered even in individuals with severe AD. In addition, individuals, specifically, with CDR 3, have multiple regions with lower volumes than individuals with a CDR 2. These results indicate that rates of atrophy have not plateaued out at CDR 2–3, and in severe patients there are yet neuronal loss and gliosis. These findings can add important information to the more accepted model in the literature that focuses mainly on early stages. Our findings allow a better understanding on the AD pathophysiologic process and follow-up process of drug treatment even at advanced disease stages.


Brain Topography | 2015

A Comparison of Independent Component Analysis (ICA) of fMRI and Electrical Source Imaging (ESI) in Focal Epilepsy Reveals Misclassification Using a Classifier

Danilo Maziero; Marcio J. Sturzbecher; Tonicarlo Rodrigues Velasco; Carlo Rondinoni; Agustin Lage Castellanos; David W. Carmichael; Carlos Ernesto Garrido Salmon

Interictal epileptiform discharges (IEDs) can produce haemodynamic responses that can be detected by electroencephalography-functional magnetic resonance imaging (EEG-fMRI) using different analysis methods such as the general linear model (GLM) of IEDs or independent component analysis (ICA). The IEDs can also be mapped by electrical source imaging (ESI) which has been demonstrated to be useful in presurgical evaluation in a high proportion of cases with focal IEDs. ICA advantageously does not require IEDs or a model of haemodynamic responses but its use in EEG-fMRI of epilepsy has been limited by its ability to separate and select epileptic components. Here, we evaluated the performance of a classifier that aims to filter all non-BOLD responses and we compared the spatial and temporal features of the selected independent components (ICs). The components selected by the classifier were compared to those components selected by a strong spatial correlation with ESI maps of IED sources. Both sets of ICs were subsequently compared to a temporal model derived from the convolution of the IEDs (derived from the simultaneously acquired EEG) with a standard haemodynamic response. Selected ICs were compared to the patients’ clinical information in 13 patients with focal epilepsy. We found that the misclassified ICs clearly related to IED in 16/25 cases. We also found that the classifier failed predominantly due to the increased spectral range of fMRIs temporal responses to IEDs. In conclusion, we show that ICA can be an efficient approach to separate responses related to epilepsy but that contemporary classifiers need to be retrained for epilepsy data. Our findings indicate that, for ICA to contribute to the analysis of data without IEDs to improve its sensitivity, classification strategies based on data features other than IC time course frequency is required.


3D Printing in Medicine | 2018

Patient-specific neurosurgical phantom: assessment of visual quality, accuracy, and scaling effects

Felipe Wilker Grillo; Victor Hugo Souza; Renan Hiroshi Matsuda; Carlo Rondinoni; Theo Z. Pavan; Oswaldo Baffa; Hélio Rubens Machado; Antonio Adilton Oliveira Carneiro

BackgroundTraining in medical education depends on the availability of standardized materials that can reliably mimic the human anatomy and physiology. One alternative to using cadavers or animal bodies is to employ phantoms or mimicking devices. Styrene-ethylene/butylene-styrene (SEBS) gels are biologically inert and present tunable properties, including mechanical properties that resemble the soft tissue. Therefore, SEBS is an alternative to develop a patient-specific phantom, that provides real visual and morphological experience during simulation-based neurosurgical training.ResultsA 3D model was reconstructed and printed based on patient-specific magnetic resonance images. The fused deposition of polyactic acid (PLA) filament and selective laser sintering of polyamid were used for 3D printing. Silicone and SEBS materials were employed to mimic soft tissues. A neuronavigation protocol was performed on the 3D-printed models scaled to three different sizes, 100%, 50%, and 25% of the original dimensions. A neurosurgery team (17 individuals) evaluated the phantom realism as “very good” and “perfect” in 49% and 31% of the cases, respectively, and rated phantom utility as “very good” and “perfect” in 61% and 32% of the cases, respectively. Models in original size (100%) and scaled to 50% provided a quantitative and realistic visual analysis of the patient’s cortical anatomy without distortion. However, reduction to one quarter of the original size (25%) hindered visualization of surface details and identification of anatomical landmarks.ConclusionsA patient-specific phantom was developed with anatomically and spatially accurate shapes, that can be used as an alternative for surgical planning. Printed models scaled to sizes that avoided quality loss might save time and reduce medical training costs.


Hand Therapy | 2018

Cortical and functional responses to an early protocol of sensory re-education of the hand using audio–tactile interaction:

Raquel Metzker Mendes; Carlo Rondinoni; Marisa de Cássia Registro Fonseca; Rafael Inácio Barbosa; Carlos Ernesto Garrido Salmon; Cláudio Henrique Barbieri; Nilton Mazzer

Introduction Early sensory re-education techniques are important strategies associated with cortical hand area preservation. The aim of this study was to investigate early cortical responses, sensory function outcomes and disability in patients treated with an early protocol of sensory re-education of the hand using an audio-tactile interaction device with a sensor glove model. Methods After surgical repair of median and/or ulnar nerves, participants received either early sensory re-education twice a week with the sensor glove during three months or no specific sensory training. Both groups underwent standard rehabilitation. Patients were assessed at one, three and six months after surgery on training-related cortical responses by functional magnetic resonance imaging, sensory thresholds, discriminative touch and disability using the Disabilities of the Arm, Shoulder and Hand patient-reported questionnaire. Results At six-months, there were no statistically significant differences in sensory function between groups. During functional magnetic resonance imaging, trained patients presented complex cortical responses to auditory stimulation indicating an effective connectivity between the cortical hand map and associative areas. Conclusion Training with the sensor glove model seems to provide some type of early cortical audio-tactile interaction in patients with sensory impairment at the hand after nerve injury. Although no differences were observed between groups related to sensory function and disability at the intermediate phase of peripheral reinnervation, this study suggests that an early sensory intervention by sensory substitution could be an option to enhance the response on cortical reorganization after nerve repair in the hand. Longer follow-up and an adequately powered trial is needed to confirm our findings.

Collaboration


Dive into the Carlo Rondinoni's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Draulio B. de Araujo

Federal University of Rio Grande do Norte

View shared research outputs
Researchain Logo
Decentralizing Knowledge