Carlo Schmidt
Max Planck Society
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Carlo Schmidt.
Nature | 2011
Henry N. Chapman; Petra Fromme; Anton Barty; Thomas A. White; Richard A. Kirian; Andrew Aquila; Mark S. Hunter; Joachim Schulz; Daniel P. DePonte; Uwe Weierstall; R. Bruce Doak; Filipe R. N. C. Maia; Andrew V. Martin; Ilme Schlichting; Lukas Lomb; Nicola Coppola; Robert L. Shoeman; Sascha W. Epp; Robert Hartmann; Daniel Rolles; A. Rudenko; Lutz Foucar; Nils Kimmel; Georg Weidenspointner; Peter Holl; Mengning Liang; Miriam Barthelmess; Carl Caleman; Sébastien Boutet; Michael J. Bogan
X-ray crystallography provides the vast majority of macromolecular structures, but the success of the method relies on growing crystals of sufficient size. In conventional measurements, the necessary increase in X-ray dose to record data from crystals that are too small leads to extensive damage before a diffraction signal can be recorded. It is particularly challenging to obtain large, well-diffracting crystals of membrane proteins, for which fewer than 300 unique structures have been determined despite their importance in all living cells. Here we present a method for structure determination where single-crystal X-ray diffraction ‘snapshots’ are collected from a fully hydrated stream of nanocrystals using femtosecond pulses from a hard-X-ray free-electron laser, the Linac Coherent Light Source. We prove this concept with nanocrystals of photosystem I, one of the largest membrane protein complexes. More than 3,000,000 diffraction patterns were collected in this study, and a three-dimensional data set was assembled from individual photosystem I nanocrystals (∼200 nm to 2 μm in size). We mitigate the problem of radiation damage in crystallography by using pulses briefer than the timescale of most damage processes. This offers a new approach to structure determination of macromolecules that do not yield crystals of sufficient size for studies using conventional radiation sources or are particularly sensitive to radiation damage.
Nature | 2011
M. Marvin Seibert; Tomas Ekeberg; Filipe R. N. C. Maia; Martin Svenda; Jakob Andreasson; O Jonsson; Duško Odić; Bianca Iwan; Andrea Rocker; Daniel Westphal; Max F. Hantke; Daniel P. DePonte; Anton Barty; Joachim Schulz; Lars Gumprecht; Nicola Coppola; Andrew Aquila; Mengning Liang; Thomas A. White; Andrew V. Martin; Carl Caleman; Stephan Stern; Chantal Abergel; Virginie Seltzer; Jean-Michel Claverie; Christoph Bostedt; John D. Bozek; Sébastien Boutet; A. Miahnahri; Marc Messerschmidt
X-ray lasers offer new capabilities in understanding the structure of biological systems, complex materials and matter under extreme conditions. Very short and extremely bright, coherent X-ray pulses can be used to outrun key damage processes and obtain a single diffraction pattern from a large macromolecule, a virus or a cell before the sample explodes and turns into plasma. The continuous diffraction pattern of non-crystalline objects permits oversampling and direct phase retrieval. Here we show that high-quality diffraction data can be obtained with a single X-ray pulse from a non-crystalline biological sample, a single mimivirus particle, which was injected into the pulsed beam of a hard-X-ray free-electron laser, the Linac Coherent Light Source. Calculations indicate that the energy deposited into the virus by the pulse heated the particle to over 100,000 K after the pulse had left the sample. The reconstructed exit wavefront (image) yielded 32-nm full-period resolution in a single exposure and showed no measurable damage. The reconstruction indicates inhomogeneous arrangement of dense material inside the virion. We expect that significantly higher resolutions will be achieved in such experiments with shorter and brighter photon pulses focused to a smaller area. The resolution in such experiments can be further extended for samples available in multiple identical copies.
Optics Express | 2012
Andrew Aquila; Mark S. Hunter; R. Bruce Doak; Richard A. Kirian; Petra Fromme; Thomas A. White; Jakob Andreasson; David Arnlund; Sasa Bajt; Thomas R. M. Barends; Miriam Barthelmess; Michael J. Bogan; Christoph Bostedt; Hervé Bottin; John D. Bozek; Carl Caleman; Nicola Coppola; Jan Davidsson; Daniel P. DePonte; Veit Elser; Sascha W. Epp; Benjamin Erk; Holger Fleckenstein; Lutz Foucar; Matthias Frank; Raimund Fromme; Heinz Graafsma; Ingo Grotjohann; Lars Gumprecht; Janos Hajdu
We demonstrate the use of an X-ray free electron laser synchronized with an optical pump laser to obtain X-ray diffraction snapshots from the photoactivated states of large membrane protein complexes in the form of nanocrystals flowing in a liquid jet. Light-induced changes of Photosystem I-Ferredoxin co-crystals were observed at time delays of 5 to 10 µs after excitation. The result correlates with the microsecond kinetics of electron transfer from Photosystem I to ferredoxin. The undocking process that follows the electron transfer leads to large rearrangements in the crystals that will terminally lead to the disintegration of the crystals. We describe the experimental setup and obtain the first time-resolved femtosecond serial X-ray crystallography results from an irreversible photo-chemical reaction at the Linac Coherent Light Source. This technique opens the door to time-resolved structural studies of reaction dynamics in biological systems.
Applied Physics Letters | 2012
Sebastian Schorb; Tais Gorkhover; James Cryan; James M. Glownia; Mina Bionta; Ryan Coffee; Benjamin Erk; Rebecca Boll; Carlo Schmidt; Daniel Rolles; A. Rudenko; Arnaud Rouzée; M. Swiggers; S. Carron; Jean-Charles Castagna; John D. Bozek; Marc Messerschmidt; W. F. Schlotter; Christoph Bostedt
X-ray–optical pump–probe experiments at the Linac Coherent Light Source (LCLS) have so far been limited to a time resolution of 280 fs fwhm due to timing jitter between the accelerator-based free-electron laser (FEL) and optical lasers. We have implemented a single-shot cross-correlator for femtosecond x-ray and infrared pulses. A reference experiment relying only on the pulse arrival time information from the cross-correlator shows a time resolution better than 50 fs fwhm (22 fs rms) and also yields a direct measurement of the maximal x-ray pulse length. The improved time resolution enables ultrafast pump–probe experiments with x-ray pulses from LCLS and other FEL sources.
Physical Review Letters | 2014
Jochen Küpper; Stephan Stern; Lotte Holmegaard; Frank Filsinger; Arnaud Rouzée; Artem Rudenko; Per Johnsson; Andrew V. Martin; Marcus Adolph; Andrew Aquila; Sasa Bajt; Anton Barty; Christoph Bostedt; John D. Bozek; Carl Caleman; Ryan Coffee; Nicola Coppola; Tjark Delmas; Sascha W. Epp; Benjamin Erk; Lutz Foucar; Tais Gorkhover; Lars Gumprecht; Andreas Hartmann; Robert Hartmann; Günter Hauser; Peter Holl; André Hömke; Nils Kimmel; Faton Krasniqi
We report experimental results on x-ray diffraction of quantum-state-selected and strongly aligned ensembles of the prototypical asymmetric rotor molecule 2,5-diiodobenzonitrile using the Linac Coherent Light Source. The experiments demonstrate first steps toward a new approach to diffractive imaging of distinct structures of individual, isolated gas-phase molecules. We confirm several key ingredients of single molecule diffraction experiments: the abilities to detect and count individual scattered x-ray photons in single shot diffraction data, to deliver state-selected, e.g., structural-isomer-selected, ensembles of molecules to the x-ray interaction volume, and to strongly align the scattering molecules. Our approach, using ultrashort x-ray pulses, is suitable to study ultrafast dynamics of isolated molecules.
Optics Express | 2012
Stephan Kassemeyer; Jan Steinbrener; Lukas Lomb; Elisabeth Hartmann; Andrew Aquila; Anton Barty; Andrew V. Martin; Christina Y. Hampton; Sasa Bajt; Miriam Barthelmess; Thomas R. M. Barends; Christoph Bostedt; Mario Bott; John D. Bozek; Nicola Coppola; Max J. Cryle; Daniel P. DePonte; R. Bruce Doak; Sascha W. Epp; Benjamin Erk; Holger Fleckenstein; Lutz Foucar; Heinz Graafsma; Lars Gumprecht; Andreas Hartmann; Robert Hartmann; Günter Hauser; Helmut Hirsemann; André Hömke; Peter Holl
We describe femtosecond X-ray diffraction data sets of viruses and nanoparticles collected at the Linac Coherent Light Source. The data establish the first large benchmark data sets for coherent diffraction methods freely available to the public, to bolster the development of algorithms that are essential for developing this novel approach as a useful imaging technique. Applications are 2D reconstructions, orientation classification and finally 3D imaging by assembling 2D patterns into a 3D diffraction volume.
Journal of Physics B | 2014
Daniel Rolles; Rebecca Boll; Marcus Adolph; Andy Aquila; Christoph Bostedt; John D. Bozek; Henry N. Chapman; Ryan Coffee; Nicola Coppola; P. Decleva; Tjark Delmas; Sascha W. Epp; Benjamin Erk; Frank Filsinger; Lutz Foucar; Lars Gumprecht; André Hömke; Tais Gorkhover; Lotte Holmegaard; Per Johnsson; Ch Kaiser; Faton Krasniqi; K. U. Kühnel; Jochen Maurer; Marc Messerschmidt; R. Moshammer; Wilson Quevedo; Ivan Rajkovic; Arnaud Rouzée; Benedikt Rudek
We present time-resolved femtosecond photoelectron momentum images and angular distributions of dissociating, laser-aligned 1,4-dibromobenzene (C6H4Br2) molecules measured in a near-infrared pump, soft-x-ray probe experiment performed at an x-ray free-electron laser. The observed alignment dependence of the bromine 2p photoelectron angular distributions is compared to density functional theory calculations and interpreted in terms of photoelectron diffraction. While no clear time-dependent effects are observed in the angular distribution of the Br(2p) photoelectrons, other, low-energy electrons show a pronounced dependence on the time delay between the near-infrared laser and the x-ray pulse.
Faraday Discussions | 2014
Rebecca Boll; Arnaud Rouzée; Marcus Adolph; Denis Anielski; Andrew Aquila; Sadia Bari; Cédric Bomme; Christoph Bostedt; John D. Bozek; Henry N. Chapman; Lauge Christensen; Ryan Coffee; Niccola Coppola; Sankar De; Piero Decleva; Sascha W. Epp; Benjamin Erk; Frank Filsinger; Lutz Foucar; Tais Gorkhover; Lars Gumprecht; André Hömke; Lotte Holmegaard; Per Johnsson; Jens S. Kienitz; Thomas Kierspel; Faton Krasniqi; Kai-Uwe Kühnel; Jochen Maurer; Marc Messerschmidt
This paper gives an account of our progress towards performing femtosecond time-resolved photoelectron diffraction on gas-phase molecules in a pump-probe setup combining optical lasers and an X-ray free-electron laser. We present results of two experiments aimed at measuring photoelectron angular distributions of laser-aligned 1-ethynyl-4-fluorobenzene (C(8)H(5)F) and dissociating, laser-aligned 1,4-dibromobenzene (C(6)H(4)Br(2)) molecules and discuss them in the larger context of photoelectron diffraction on gas-phase molecules. We also show how the strong nanosecond laser pulse used for adiabatically laser-aligning the molecules influences the measured electron and ion spectra and angular distributions, and discuss how this may affect the outcome of future time-resolved photoelectron diffraction experiments.
Proceedings of SPIE | 2011
Andrew V. Martin; Jakob Andreasson; Andrew Aquila; Sasa Bajt; Thomas R. M. Barends; Miriam Barthelmess; Anton Barty; W. Henry Benner; Christoph Bostedt; John D. Bozek; Phillip Bucksbaum; Carl Caleman; Nicola Coppola; Daniel P. DePonte; Tomas Ekeberg; Sascha W. Epp; Benjamin Erk; George R. Farquar; Holger Fleckenstein; Lutz Foucar; Matthias Frank; Lars Gumprecht; Christina Y. Hampton; Max F. Hantke; Andreas Hartmann; Elisabeth Hartmann; Robert Hartmann; Stephan P. Hau-Riege; G. Hauser; Peter Holl
Results of coherent diffractive imaging experiments performed with soft X-rays (1-2 keV) at the Linac Coherent Light Source are presented. Both organic and inorganic nano-sized objects were injected into the XFEL beam as an aerosol focused with an aerodynamic lens. The high intensity and femtosecond duration of X-ray pulses produced by the Linac Coherent Light Source allow structural information to be recorded by X-ray diffraction before the particle is destroyed. Images were formed by using iterative methods to phase single shot diffraction patterns. Strategies for improving the reconstruction methods have been developed. This technique opens up exciting opportunities for biological imaging, allowing structure determination without freezing, staining or crystallization.
Scientific Data | 2016
Tomas Ekeberg; Martin Svenda; M. Marvin Seibert; Chantal Abergel; Filipe R. N. C. Maia; Virginie Seltzer; Daniel P. DePonte; Andrew Aquila; Jakob Andreasson; Bianca Iwan; O Jonsson; Daniel Westphal; Duško Odić; Inger Andersson; Anton Barty; Meng Liang; Andrew V. Martin; Lars Gumprecht; Holger Fleckenstein; Sasa Bajt; Miriam Barthelmess; Nicola Coppola; Jean-Michel Claverie; N. Duane Loh; Christoph Bostedt; John D. Bozek; J. Krzywinski; Marc Messerschmidt; Michael J. Bogan; Christina Y. Hampton
Free-electron lasers (FEL) hold the potential to revolutionize structural biology by producing X-ray pules short enough to outrun radiation damage, thus allowing imaging of biological samples without the limitation from radiation damage. Thus, a major part of the scientific case for the first FELs was three-dimensional (3D) reconstruction of non-crystalline biological objects. In a recent publication we demonstrated the first 3D reconstruction of a biological object from an X-ray FEL using this technique. The sample was the giant Mimivirus, which is one of the largest known viruses with a diameter of 450 nm. Here we present the dataset used for this successful reconstruction. Data-analysis methods for single-particle imaging at FELs are undergoing heavy development but data collection relies on very limited time available through a highly competitive proposal process. This dataset provides experimental data to the entire community and could boost algorithm development and provide a benchmark dataset for new algorithms.