Carlo Sensenhauser
Janssen Pharmaceutica
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Carlo Sensenhauser.
Chemical Research in Toxicology | 2011
Heng-Keang Lim; Jie Chen; Carlo Sensenhauser; Kevin Cook; Robert Preston; Tynisha Thomas; Brian C. Shook; Paul F. Jackson; Stefanie Rassnick; Kenneth J. Rhodes; Vedwatee Gopaul; Rhys Salter; José M. Silva; David C. Evans
2-Amino-4-phenyl-8-pyrrolidin-1-ylmethyl-indeno[1,2-d]pyrimidin-5-one (1) is a novel and potent selective dual A(2A)/A(1) adenosine receptor antagonist from the arylindenopyrimidine series that was determined to be genotoxic in both the Ames and Mouse Lymphoma L5178Y assays only following metabolic activation. Compound 1 was identified as a frame-shift mutagen in Salmonella typhimurium tester strain TA1537 as indicated by a significant dose-dependent increase in revertant colonies as compared to the vehicle control. The metabolic activation-dependent irreversible covalent binding of radioactivity to DNA, recovery of 1 and its enamine metabolite from acid hydrolysis of covalently modified DNA, and protection of covalent binding to DNA by both cyanide ion and methoxylamine suggest that the frame-shift mutation in TA1537 strain involved covalent binding instead of simple intercalation to DNA. Compound 1 was bioactivated to endocyclic iminium ion, aldehyde, epoxide, and α,β-unsaturated keto reactive intermediates from the detection of cyano, oxime, and glutathione conjugates by data-dependent high resolution accurate mass measurements. Collision-induced dissociation of these conjugates provided evidence for bioactivation of the pyrrolidine ring of 1. The epoxide and α,β-unsaturated keto reactive intermediates were unlikely to cause the genotoxicity of 1 because the formation of their glutathione adducts did not ameliorate the binding of compound related material to DNA. Instead, the endocyclic iminium ions and amino aldehydes were likely candidates responsible for genotoxicity based on, first, the protection afforded by both cyanide ion and methoxylamine, which reduced the potential to form covalent adducts with DNA, and, second, analogues of 1 designed with low probability to form these reactive intermediates were not genotoxic. It was concluded that 1 also had the potential to be mutagenic in humans based on observing the endocyclic iminium ion following incubation with a human liver S9 preparation and the commensurate detection of DNA adducts. An understanding of this genotoxicity mechanism supported an evidence-based approach to selectively modify the structure of 1 which resulted in analogues being synthesized that were devoid of a genotoxic liability. In addition, potency and selectivity against both adenosine A(2A) and A(1) receptors were maintained.
Drug Metabolism and Disposition | 2013
Shannon Dallas; Souvik Chattopadhyay; Carlo Sensenhauser; Ameesha Batheja; Monica Singer; Jose Silva
Psoriasis is a T-cell-mediated autoimmune disease involving the skin. Two cytokines, interleukin-12 (IL-12) and IL-23 have been shown to play a pivotal role in the pathogenesis of the disease. Ustekinumab (Stelara) is a therapeutic monoclonal antibody (mAb) targeted against the p40 shared subunit of IL-12 and IL-23. Recently the ability of therapeutic proteins (TP) including mAbs that target either cytokines directly (e.g., Pegasys; peginterferon α-2a) or their respective cell surface receptors [e.g., tocilizumab (Actemra); anti IL-6R] to desuppress cytochrome P450 (P450) enzymes in vitro and in the clinic, has been demonstrated. In the present study the ability of IL-12 and IL-23 to suppress multiple P450 enzymes was investigated in vitro using six separate lots of cultured human hepatocytes. Following exposure of 10 ng/ml IL-12 and IL-23 for 48 hours, either alone or in combination, no change in CYP2B6, 2C9, 2C19, or 3A4 gene expression or functional activity was observed. None of the untreated hepatocyte donors showed appreciable expression of the IL-12 or IL-23 receptors. Similar results were seen with whole human liver samples. Exposure of hepatocytes to IL-12 and/or IL-23, known P450 suppressors (IL-6 and tumor necrosis factor-α) or known P450 inducers (β-naphthoflavone, phenobarbital, and rifampicin) did not appreciably alter the expression of the IL-12 and IL-23 receptors either. Finally, in contrast to the positive control IL-6, expression of the acute phase C-reactive protein was unaltered following IL-12 and/or IL-23 treatment. Together, these data suggest a negligible propensity for IL-12 or IL-23 to directly alter P450 enzymes in human hepatocytes.
Current Drug Metabolism | 2012
Shannon Dallas; Carlo Sensenhauser; Ameesha Batheja; Monica Singer; Maria Markowska; Cindy Zakszewski; Rao N.V.S. Mamidi; Michael McMillia; Chao Han; Honghui Zhou; José M. Silva
Inflammatory diseases such as rheumatoid arthritis and psoriasis are characterized by increases in circulating cytokines, which play an important role in modulation of the disease state. Several marketed bio-therapeutics target cytokines and act as effective treatment strategies. Previous in-vitro and in-vivo studies have suggested that cytokines may have both direct and indirect effects on drug metabolizing enzyme levels in the liver. Few studies have characterized models to evaluate the risk of potential drug interactions that might be mediated by changes in cytokine levels. In the present studies the potential of three cytokines (IL-2, IL-6 and TNF-α) to modulate gene expression and activity of the major human cytochrome P450 (CYP) enzymes (CYP1A2, 2B6, 2C9, 2C19, 2D6, and 3A4) in cryopreserved human hepatocytes (CHH) was investigated. Significant decreases in the activity of all 6 CYP isoforms occurred in hepatocytes incubated with TNF-α or IL-6 (17-85%; and 22-76% of untreated control values, respectively). TNF-α down-regulated the gene expression of CYP1A2, 2D6 and 3A4 only, whereas IL-6 down-regulated gene expression of all of the tested CYP isoforms except 2D6. IL-2 had only mild effects on CYP activity and mRNA levels of examined isoforms. In CHH exposed to TNF-α, changes in CYP activity were not always paralleled by gene expression alterations for three of the examined CYP isoforms. These studies highlight several potential pitfalls in using isolated human hepatocytes for determination of drug interactions by bio-therapeutics including lack of correlation of mRNA and activity measurements for some CYP isoforms when using single time point determinations, and appropriateness of the model for indirect acting cytokine and cytokine modulators.
Journal of Applied Toxicology | 2016
Lei Xia; Xin Hong; Rashidah Binte Sakban; Yinghua Qu; Michael McMillian; Shannon Dallas; Jose Silva; Carlo Sensenhauser; Sylvia Zhao; Heng Keang Lim; Hanry Yu
Cytochrome P450 (CYP) induction is a key risk factor of clinical drug–drug interactions that has to be mitigated in the early phases of drug discovery. Three‐dimensional (3D) cultures of hepatocytes in vitro have recently emerged as a potentially better platform to recapitulate the in vivo liver structure and to maintain long‐term hepatic functions as compared with conventional two‐dimensional (2D) monolayer cultures. However, the majority of published studies on 3D hepatocyte models use rat hepatocytes and the response to CYP inducers between rodents and humans is distinct. In the present study, we constructed tethered spheroids on RGD/galactose‐conjugated membranes as an in vitro 3D model using cryopreserved human hepatocytes. CYP3A4 mRNA expression in the tethered spheroids was induced to a significantly greater extent than those in the collagen sandwich cultures, indicating the transcriptional regulation was more sensitive to the CYP inducers in the 3D model. Induction of CYP1A2, CYP2B6 and CYP3A4 activities in the tethered spheroids were comparable to, if not higher than that observed in the collagen sandwich cultures. The membrane‐based model is readily integrated into multi‐well plates for higher‐throughput drug testing applications, which might be an alternative model to screen the CYP induction potential in vitro with more physiological relevance. Copyright
Drug Metabolism and Disposition | 2016
Johan Monbaliu; Martha Gonzalez; Apexa Bernard; James Jiao; Carlo Sensenhauser; Jan Snoeys; Hans Stieltjes; Inneke Wynant; Johan W. Smit; Caly Chien
Abiraterone acetate, the prodrug of the cytochrome P450 C17 inhibitor abiraterone, plus prednisone is approved for treatment of metastatic castration-resistant prostate cancer. We explored whether abiraterone interacts with drugs metabolized by CYP2C8, an enzyme responsible for the metabolism of many drugs. Abiraterone acetate and abiraterone and its major metabolites, abiraterone sulfate and abiraterone sulfate N-oxide, inhibited CYP2C8 in human liver microsomes, with IC50 values near or below the peak total concentrations observed in patients with metastatic castration-resistant prostate cancer (IC50 values: 1.3–3.0 µM, 1.6–2.9 µM, 0.044–0.15 µM, and 5.4–5.9 µM, respectively). CYP2C8 inhibition was reversible and time-independent. To explore the clinical relevance of the in vitro data, an open-label, single-center study was conducted comprising 16 healthy male subjects who received a single 15-mg dose of the CYP2C8 substrate pioglitazone on day 1 and again 1 hour after the administration of abiraterone acetate 1000 mg on day 8. Plasma concentrations of pioglitazone, its active M-III (keto derivative) and M-IV (hydroxyl derivative) metabolites, and abiraterone were determined for up to 72 hours after each dose. Abiraterone acetate increased exposure to pioglitazone; the geometric mean ratio (day 8/day 1) was 125 [90% confidence interval (CI), 99.9–156] for Cmax and 146 (90% CI, 126–171) for AUClast. Exposure to M-III and M-IV was reduced by 10% to 13%. Plasma abiraterone concentrations were consistent with previous studies. These results show that abiraterone only weakly inhibits CYP2C8 in vivo.
Biopharmaceutics & Drug Disposition | 2016
Ian Templeton; Paulien Ravenstijn; Carlo Sensenhauser; Jan Snoeys
Domperidone is a dopamine receptor antagonist and a substrate of CYP3A4, hence there is a potential for CYP3A inhibition‐based drug–drug interactions (DDI). A physiologically based pharmacokinetic model was developed to describe DDIs between domperidone and three different inhibitors of CYP3A4. Simcyp V13.1 was used to simulate human domperidone pharmacokinetics and DDIs. Inputs included domperidone chemical and physical properties (LogP, pKa, etc.), in vitro human liver microsomal data and pharmacokinetic parameters from single‐dose intravenous clinical studies in healthy participants. The simulated mean maximum domperidone plasma concentration and AUC after single‐ and multiple‐oral doses under diverse conditions were within 1.1–1.4 fold of the observed values. The simulated intestinal availability, hepatic availability and the fraction absorbed were 0.45 ± 0.14, 0.31 ± 0.10 and 0.89 ± 0.11, respectively, and comparable to observed in vivo values. The simulated ratios of AUC and Cmax in the presence of ketoconazole, erythromycin or itraconazole to baseline were consistent with the observed ratios. Simulated ketoconazole, erythromycin, itraconazole and Cmax,ss and AUCss were within 1.5‐fold of the observed values. Copyright
British Journal of Clinical Pharmacology | 2017
Rao N.V.S. Mamidi; Shannon Dallas; Carlo Sensenhauser; Heng Keang Lim; Ellen Scheers; Peter Verboven; Filip Cuyckens; Laurent Leclercq; David C. Evans; Michael F. Kelley; Mark D. Johnson; Jan Snoeys
Aims Canagliflozin is a recently approved drug for use in the treatment of type 2 diabetes. The potential for canagliflozin to cause clinical drug–drug interactions (DDIs) was assessed. Methods DDI potential of canagliflozin was investigated using in vitro test systems containing drug metabolizing enzymes or transporters. Basic predictive approaches were applied to determine potential interactions in vivo. A physiologically‐based pharmacokinetic (PBPK) model was developed and clinical DDI simulations were performed to determine the likelihood of cytochrome P450 (CYP) inhibition by canagliflozin. Results Canagliflozin was primarily metabolized by uridine 5′‐diphospho‐glucuronosyltransferase 1A9 and 2B4 enzymes. Canagliflozin was a substrate of efflux transporters (P‐glycoprotein, breast cancer resistance protein and multidrug resistance‐associated protein‐2) but was not a substrate of uptake transporters (organic anion transporter polypeptide isoforms OATP1B1, OATP1B3, organic anion transporters OAT1 and OAT3, and organic cationic transporters OCT1, and OCT2). In inhibition assays, canagliflozin was shown to be a weak in vitro inhibitor (IC50) of CYP3A4 (27 &mgr;mol l –1, standard error [SE] 4.9), CYP2C9 (80 &mgr;mol l –1, SE 8.1), CYP2B6 (16 &mgr;mol l–1, SE 2.1), CYP2C8 (75 &mgr;mol l –1, SE 6.4), P‐glycoprotein (19.3 &mgr;mol l –1, SE 7.2), and multidrug resistance‐associated protein‐2 (21.5 &mgr;mol l –1, SE 3.1). Basic models recommended in DDI guidelines (US Food & Drug Administration and European Medicines Agency) predicted moderate to low likelihood of interaction for these CYPs and efflux transporters. PBPK DDI simulations of canagliflozin with CYP probe substrates (simvastatin, S‐warfarin, bupropion, repaglinide) did not show relevant interaction in humans since mean areas under the concentration‐time curve and maximum plasma concentration ratios for probe substrates with and without canagliflozin and its 95% CIs were within 0.80–1.25. Conclusions In vitro DDI followed by a predictive or PBPK approach was applied to determine DDI potential of canagliflozin. Overall, canagliflozin is neither a perpetrator nor a victim of clinically important interactions.
British Journal of Clinical Pharmacology | 2016
Rao N.V.S. Mamidi; Shannon Dallas; Carlo Sensenhauser; Heng Keang Lim; Ellen Scheers; Peter Verboven; Filip Cuyckens; Laurent Leclercq; David C. Evans; Michael F. Kelley; Johnson; Jan Snoeys
Aims Canagliflozin is a recently approved drug for use in the treatment of type 2 diabetes. The potential for canagliflozin to cause clinical drug–drug interactions (DDIs) was assessed. Methods DDI potential of canagliflozin was investigated using in vitro test systems containing drug metabolizing enzymes or transporters. Basic predictive approaches were applied to determine potential interactions in vivo. A physiologically‐based pharmacokinetic (PBPK) model was developed and clinical DDI simulations were performed to determine the likelihood of cytochrome P450 (CYP) inhibition by canagliflozin. Results Canagliflozin was primarily metabolized by uridine 5′‐diphospho‐glucuronosyltransferase 1A9 and 2B4 enzymes. Canagliflozin was a substrate of efflux transporters (P‐glycoprotein, breast cancer resistance protein and multidrug resistance‐associated protein‐2) but was not a substrate of uptake transporters (organic anion transporter polypeptide isoforms OATP1B1, OATP1B3, organic anion transporters OAT1 and OAT3, and organic cationic transporters OCT1, and OCT2). In inhibition assays, canagliflozin was shown to be a weak in vitro inhibitor (IC50) of CYP3A4 (27 &mgr;mol l –1, standard error [SE] 4.9), CYP2C9 (80 &mgr;mol l –1, SE 8.1), CYP2B6 (16 &mgr;mol l–1, SE 2.1), CYP2C8 (75 &mgr;mol l –1, SE 6.4), P‐glycoprotein (19.3 &mgr;mol l –1, SE 7.2), and multidrug resistance‐associated protein‐2 (21.5 &mgr;mol l –1, SE 3.1). Basic models recommended in DDI guidelines (US Food & Drug Administration and European Medicines Agency) predicted moderate to low likelihood of interaction for these CYPs and efflux transporters. PBPK DDI simulations of canagliflozin with CYP probe substrates (simvastatin, S‐warfarin, bupropion, repaglinide) did not show relevant interaction in humans since mean areas under the concentration‐time curve and maximum plasma concentration ratios for probe substrates with and without canagliflozin and its 95% CIs were within 0.80–1.25. Conclusions In vitro DDI followed by a predictive or PBPK approach was applied to determine DDI potential of canagliflozin. Overall, canagliflozin is neither a perpetrator nor a victim of clinically important interactions.
Drug Metabolism and Disposition | 2005
Dirk Roymans; Pieter Annaert; Jos Van Houdt; Adri Weygers; Jan Noukens; Carlo Sensenhauser; José M. Silva; Cis Van Looveren; Jan F. A. Hendrickx; Geert Mannens; W. Meuldermans
Pharmaceutical Sciences Encyclopedia | 2013
Shannon Dallas; Carlo Sensenhauser; Souvik Chattopadhyay; Jose Silva