Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carlo Viscomi is active.

Publication


Featured researches published by Carlo Viscomi.


Nature Genetics | 2006

MPV17 encodes an inner mitochondrial membrane protein and is mutated in infantile hepatic mitochondrial DNA depletion

Antonella Spinazzola; Carlo Viscomi; Erika Fernandez-Vizarra; Franco Carrara; Pio D'Adamo; Sarah E. Calvo; René Massimiliano Marsano; Claudia Donnini; Hans Weiher; Pietro Strisciuglio; Rossella Parini; Emmanuelle Sarzi; Alicia Chan; Salvatore DiMauro; Agnès Rötig; Paolo Gasparini; Iliana Ferrero; Vamsi K. Mootha; Valeria Tiranti; Massimo Zeviani

The mitochondrial (mt) DNA depletion syndromes (MDDS) are genetic disorders characterized by a severe, tissue-specific decrease of mtDNA copy number, leading to organ failure. There are two main clinical presentations: myopathic (OMIM 609560) and hepatocerebral (OMIM 251880). Known mutant genes, including TK2 (ref. 2), SUCLA2 (ref. 3), DGUOK (ref. 4) and POLG, account for only a fraction of MDDS cases. We found a new locus for hepatocerebral MDDS on chromosome 2p21-23 and prioritized the genes on this locus using a new integrative genomics strategy. One of the top-scoring candidates was the human ortholog of the mouse kidney disease gene Mpv17 (ref. 8). We found disease-segregating mutations in three families with hepatocerebral MDDS and demonstrated that, contrary to the alleged peroxisomal localization of the MPV17 gene product, MPV17 is a mitochondrial inner membrane protein, and its absence or malfunction causes oxidative phosphorylation (OXPHOS) failure and mtDNA depletion, not only in affected individuals but also in Mpv17−/− mice.


Nature Medicine | 2009

Loss of ETHE1, a mitochondrial dioxygenase, causes fatal sulfide toxicity in ethylmalonic encephalopathy

Valeria Tiranti; Carlo Viscomi; Tatjana M. Hildebrandt; Ivano Di Meo; Rossana Mineri; Cecilia Tiveron; Michael D. Levitt; Alessandro Prelle; Gigliola Fagiolari; M. Rimoldi; Massimo Zeviani

Ethylmalonic encephalopathy is an autosomal recessive, invariably fatal disorder characterized by early-onset encephalopathy, microangiopathy, chronic diarrhea, defective cytochrome c oxidase (COX) in muscle and brain, high concentrations of C4 and C5 acylcarnitines in blood and high excretion of ethylmalonic acid in urine. ETHE1, a gene encoding a β-lactamase–like, iron-coordinating metalloprotein, is mutated in ethylmalonic encephalopathy. In bacteria, ETHE1-like sequences are in the same operon of, or fused with, orthologs of TST, the gene encoding rhodanese, a sulfurtransferase. In eukaryotes, both ETHE1 and rhodanese are located within the mitochondrial matrix. We created a Ethe1−/− mouse that showed the cardinal features of ethylmalonic encephalopathy. We found that thiosulfate was excreted in massive amounts in urine of both Ethe1−/− mice and humans with ethylmalonic encephalopathy. High thiosulfate and sulfide concentrations were present in Ethe1−/− mouse tissues. Sulfide is a powerful inhibitor of COX and short-chain fatty acid oxidation, with vasoactive and vasotoxic effects that explain the microangiopathy in ethylmalonic encephalopathy patients. Sulfide is detoxified by a mitochondrial pathway that includes a sulfur dioxygenase. Sulfur dioxygenase activity was absent in Ethe1−/− mice, whereas it was markedly increased by ETHE1 overexpression in HeLa cells and Escherichia coli. Therefore, ETHE1 is a mitochondrial sulfur dioxygenase involved in catabolism of sulfide that accumulates to toxic levels in ethylmalonic encephalopathy.


Cell Metabolism | 2011

In Vivo Correction of COX Deficiency by Activation of the AMPK/PGC-1α Axis

Carlo Viscomi; Emanuela Bottani; Gabriele Civiletto; Raffaele Cerutti; Maurizio Moggio; Gigliola Fagiolari; Eric A. Schon; Costanza Lamperti; Massimo Zeviani

Summary Increased mitochondrial biogenesis by activation of PPAR- or AMPK/PGC-1α-dependent homeostatic pathways has been proposed as a treatment for mitochondrial disease. We tested this hypothesis on three recombinant mouse models characterized by defective cytochrome c-oxidase (COX) activity: a knockout (KO) mouse for Surf1, a knockout/knockin mouse for Sco2, and a muscle-restricted KO mouse for Cox15. First, we demonstrated that double-recombinant animals overexpressing PGC-1α in skeletal muscle on a Surf1 KO background showed robust induction of mitochondrial biogenesis and increase of mitochondrial respiratory chain activities, including COX. No such effect was obtained by treating both Surf1−/− and Cox15−/− mice with the pan-PPAR agonist bezafibrate, which instead showed adverse effects in either model. Contrariwise, treatment with the AMPK agonist AICAR led to partial correction of COX deficiency in all three models, and, importantly, significant motor improvement up to normal in the Sco2KO/KI mouse. These results open new perspectives for therapy of mitochondrial disease.


Cell Metabolism | 2014

NAD(+)-dependent activation of Sirt1 corrects the phenotype in a mouse model of mitochondrial disease.

Raffaele Cerutti; Eija Pirinen; Costanza Lamperti; Silvia Marchet; Anthony A. Sauve; Wei Li; Valerio Leoni; Eric A. Schon; Françoise Dantzer; Johan Auwerx; Carlo Viscomi; Massimo Zeviani

Summary Mitochondrial disorders are highly heterogeneous conditions characterized by defects of the mitochondrial respiratory chain. Pharmacological activation of mitochondrial biogenesis has been proposed as an effective means to correct the biochemical defects and ameliorate the clinical phenotype in these severely disabling, often fatal, disorders. Pathways related to mitochondrial biogenesis are targets of Sirtuin1, a NAD+-dependent protein deacetylase. As NAD+ boosts the activity of Sirtuin1 and other sirtuins, intracellular levels of NAD+ play a key role in the homeostatic control of mitochondrial function by the metabolic status of the cell. We show here that supplementation with nicotinamide riboside, a natural NAD+ precursor, or reduction of NAD+ consumption by inhibiting the poly(ADP-ribose) polymerases, leads to marked improvement of the respiratory chain defect and exercise intolerance of the Sco2 knockout/knockin mouse, a mitochondrial disease model characterized by impaired cytochrome c oxidase biogenesis. This strategy is potentially translatable into therapy of mitochondrial disorders in humans.


Cell Metabolism | 2015

The Opa1-Dependent Mitochondrial Cristae Remodeling Pathway Controls Atrophic, Apoptotic, and Ischemic Tissue Damage

Tatiana Varanita; Maria Eugenia Soriano; Vanina Romanello; Tania Zaglia; Rubén Quintana-Cabrera; Martina Semenzato; Roberta Menabò; Veronica Costa; Gabriele Civiletto; Paola Pesce; Carlo Viscomi; Massimo Zeviani; Fabio Di Lisa; Marco Mongillo; Marco Sandri; Luca Scorrano

Summary Mitochondrial morphological and ultrastructural changes occur during apoptosis and autophagy, but whether they are relevant in vivo for tissue response to damage is unclear. Here we investigate the role of the optic atrophy 1 (OPA1)-dependent cristae remodeling pathway in vivo and provide evidence that it regulates the response of multiple tissues to apoptotic, necrotic, and atrophic stimuli. Genetic inhibition of the cristae remodeling pathway in vivo does not affect development, but protects mice from denervation-induced muscular atrophy, ischemic heart and brain damage, as well as hepatocellular apoptosis. Mechanistically, OPA1-dependent mitochondrial cristae stabilization increases mitochondrial respiratory efficiency and blunts mitochondrial dysfunction, cytochrome c release, and reactive oxygen species production. Our results indicate that the OPA1-dependent cristae remodeling pathway is a fundamental, targetable determinant of tissue damage in vivo.


Cell Metabolism | 2014

Pharmacological Inhibition of Poly(ADP-Ribose) Polymerases Improves Fitness and Mitochondrial Function in Skeletal Muscle

Eija Pirinen; Carles Cantó; Young Suk Jo; Laia Morató; Hongbo Zhang; Keir J. Menzies; Evan G. Williams; Laurent Mouchiroud; Norman Moullan; Carolina E. Hagberg; Wei Li; Silvie Timmers; Ralph Imhof; Jef Verbeek; Aurora Pujol; Barbara van Loon; Carlo Viscomi; Massimo Zeviani; Patrick Schrauwen; Anthony A. Sauve; Kristina Schoonjans; Johan Auwerx

We previously demonstrated that the deletion of the poly(ADP-ribose)polymerase (Parp)-1 gene in mice enhances oxidative metabolism, thereby protecting against diet-induced obesity. However, the therapeutic use of PARP inhibitors to enhance mitochondrial function remains to be explored. Here, we show tight negative correlation between Parp-1 expression and energy expenditure in heterogeneous mouse populations, indicating that variations in PARP-1 activity have an impact on metabolic homeostasis. Notably, these genetic correlations can be translated into pharmacological applications. Long-term treatment with PARP inhibitors enhances fitness in mice by increasing the abundance of mitochondrial respiratory complexes and boosting mitochondrial respiratory capacity. Furthermore, PARP inhibitors reverse mitochondrial defects in primary myotubes of obese humans and attenuate genetic defects of mitochondrial metabolism in human fibroblasts and C. elegans. Overall, our work validates in worm, mouse, and human models that PARP inhibition may be used to treat both genetic and acquired muscle dysfunction linked to defective mitochondrial function.


Nature Medicine | 2010

Combined treatment with oral metronidazole and N -acetylcysteine is effective in ethylmalonic encephalopathy

Carlo Viscomi; Alberto Burlina; Imad Dweikat; Mario Savoiardo; Costanza Lamperti; Tatjana M. Hildebrandt; Valeria Tiranti; Massimo Zeviani

Ethylmalonic encephalopathy is caused by mutations in ETHE1, a mitochondrial matrix sulfur dioxygenase, leading to failure to detoxify sulfide, a product of intestinal anaerobes and, in trace amounts, tissues. Metronidazole, a bactericide, or N-acetylcysteine, a precursor of sulfide-buffering glutathione, substantially prolonged the lifespan of Ethe1-deficient mice, with the combined treatment being additive. The same dual treatment caused marked clinical improvement in five affected children, with hardly any adverse or side effects.


Cell Metabolism | 2015

Opa1 Overexpression Ameliorates the Phenotype of Two Mitochondrial Disease Mouse Models

Gabriele Civiletto; Tatiana Varanita; Raffaele Cerutti; Tatiana Gorletta; Serena Barbaro; Silvia Marchet; Costanza Lamperti; Carlo Viscomi; Luca Scorrano; Massimo Zeviani

Summary Increased levels of the mitochondria-shaping protein Opa1 improve respiratory chain efficiency and protect from tissue damage, suggesting that it could be an attractive target to counteract mitochondrial dysfunction. Here we show that Opa1 overexpression ameliorates two mouse models of defective mitochondrial bioenergetics. The offspring from crosses of a constitutive knockout for the structural complex I component Ndufs4 (Ndufs4−/−), and of a muscle-specific conditional knockout for the complex IV assembly factor Cox15 (Cox15sm/sm), with Opa1 transgenic (Opa1tg) mice showed improved motor skills and respiratory chain activities compared to the naive, non-Opa1-overexpressing, models. While the amelioration was modest in Ndufs4−/−::Opa1tg mice, correction of cristae ultrastructure and mitochondrial respiration, improvement of motor performance and prolongation of lifespan were remarkable in Cox15sm/sm::Opa1tg mice. Mechanistically, respiratory chain supercomplexes were increased in Cox15sm/sm::Opa1tg mice, and residual monomeric complex IV was stabilized. In conclusion, cristae shape amelioration by controlled Opa1 overexpression improves two mouse models of mitochondrial disease.


Human Molecular Genetics | 2009

Early-onset liver mtDNA depletion and late-onset proteinuric nephropathy in Mpv17 knockout mice

Carlo Viscomi; Antonella Spinazzola; Marco Maggioni; Erika Fernandez-Vizarra; Valeria Massa; Claudio Pagano; Roberto Vettor; Marina Mora; Massimo Zeviani

In humans, MPV17 mutations are responsible for severe mitochondrial depletion syndrome, mainly affecting the liver and the nervous system. To gain insight into physiopathology of MPV17-related disease, we investigated an available Mpv17 knockout animal model. We found severe mtDNA depletion in liver and, albeit to a lesser extent, in skeletal muscle, whereas hardly any depletion was detected in brain and kidney, up to 1 year after birth. Mouse embryonic fibroblasts did show mtDNA depletion, but only after several culturing passages, or in a serumless culturing medium. In spite of severe mtDNA depletion, only moderate decrease in respiratory chain enzymatic activities, and mild cytoarchitectural alterations, were observed in the Mpv17−/− livers, but neither cirrhosis nor failure ever occurred in this organ at any age. The mtDNA transcription rate was markedly increased in liver, which could contribute to compensate the severe mtDNA depletion. This phenomenon was associated with specific downregulation of Mterf1, a negative modulator of mtDNA transcription. The most relevant clinical features involved skin, inner ear and kidney. The coat of the Mpv17−/− mice turned gray early in adulthood, and 18-month or older mice developed focal segmental glomerulosclerosis (FSGS) with massive proteinuria. Concomitant degeneration of cochlear sensory epithelia was reported as well. These symptoms were associated with significantly shorter lifespan. Coincidental with the onset of FSGS, there was hardly any mtDNA left in the glomerular tufts. These results demonstrate that Mpv17 controls mtDNA copy number by a highly tissue- and possibly cytotype-specific mechanism.


Human Molecular Genetics | 2009

Paroxysmal non-kinesigenic dyskinesia is caused by mutations of the MR-1 mitochondrial targeting sequence

Daniele Ghezzi; Carlo Viscomi; Alessandra Ferlini; Francesca Gualandi; Paolo Mereghetti; Domenico DeGrandis; Massimo Zeviani

Paroxysmal non-kinesigenic dyskinesia (PNKD) is an autosomal-dominant movement disorder characterized by attacks of dystonia, chorea and athetosis. Myofibrillogenesis regulator-1 (MR-1), the gene responsible for PNKD, is transcribed into three alternatively spliced forms: long (MR-1L), medium (MR-1M) and small (MR-1S). Two mutations, A7V and A9V, were previously discovered in the N-terminal region common to MR-1L and MR-1S. We now found a third mutation, A33P, in a new PNKD patient in the same region. Contrary to previous reports, we show here that the mutation-free MR-1M is localized in the Golgi apparatus, ER and plasma membrane, whereas both MR-1L and MR-1S isoforms are mitochondrial proteins, imported into the organelle thanks to a 39 amino acid-long, N-terminal mitochondrial targeting sequence (MTS). The MTS, which contains all three PNKD mutations, is then cleaved off the mature proteins before their insertion in the inner mitochondrial membrane. Therefore, mature MR-1S and MR-1L of PNKD patients are identical to those of normal subjects. We found no difference in import efficiency and protein maturation between wild-type and mutant MR-1 variants. These results indicate that PNKD is due to a novel disease mechanism based on a deleterious action of the MTS.

Collaboration


Dive into the Carlo Viscomi's collaboration.

Top Co-Authors

Avatar

Massimo Zeviani

MRC Mitochondrial Biology Unit

View shared research outputs
Top Co-Authors

Avatar

Valeria Tiranti

University College London

View shared research outputs
Top Co-Authors

Avatar

Raffaele Cerutti

MRC Mitochondrial Biology Unit

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Emanuela Bottani

MRC Mitochondrial Biology Unit

View shared research outputs
Top Co-Authors

Avatar

Erika Fernandez-Vizarra

MRC Mitochondrial Biology Unit

View shared research outputs
Top Co-Authors

Avatar

Gabriele Civiletto

MRC Mitochondrial Biology Unit

View shared research outputs
Top Co-Authors

Avatar

Daniel Pulliam

University of Texas Health Science Center at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Holly Van Remmen

Oklahoma Medical Research Foundation

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge