Carlos A. Arias
Aarhus University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Carlos A. Arias.
Water Research | 2001
Carlos A. Arias; M. Del Bubba; Hans Brix
Sorption of P to the bed sand medium is a major removal mechanism for P in subsurface flow constructed reed beds. Selecting a sand medium with a high P-sorption capacity is therefore important to obtain a sustained P-removal. The objective of this study was to evaluate the P-removal capacities of 13 Danish sands and to relate the removal to their physico-chemical characteristics. The P-removal properties were evaluated in short-term isotherm batch-experiments as well as in 12-week percolation experiments mimicking the P-loading conditions in constructed reed bed systems. The P-removal properties of sands of different geographical origin varied considerably and the suitability of the sands for use as media in constructed reed beds thus differs. The P-removal capacity of some sands would be used up after only a few months in full-scale systems, whereas that of others would persist for a much longer time. The most important characteristic of the sands determining their P-removal capacity was their Ca-content. A high Ca content favours precipitation with P as sparingly soluble calcium phosphates particularly at the slightly alkaline conditions typical of domestic sewage. In situations where the wastewater to be treated is more acid, the contents of Fe and Al may be more important as the precipitation reactions with these ions are favoured at lower pH levels. The maximum P-sorption capacities estimated using the Langmuir-isotherm plots did not correspond to or correlate with the actual amount of P removed in the percolation columns. Hence, the Langmuir-isotherm does not estimate the P-removal capacities of sands. It is suggested that a suitable quick method of screening a selection of potential media for P-removal potential is to perform simple removal isotherm studies using water with a similar chemical composition as the wastewater to be treated. This method will not provide a direct estimate of the P-removal capacity that can be obtained in full-scale systems, but it is a means of comparing the relative performance of potential media.
Bioresource Technology | 2011
Annette Bruhn; Jonas Dahl; Henrik Bangsø Nielsen; Lars Nikolaisen; Michael Bo Rasmussen; Stiig Markager; Birgit Olesen; Carlos A. Arias; Peter Daugbjerg Jensen
The biomass production potential at temperate latitudes (56°N), and the quality of the biomass for energy production (anaerobic digestion to methane and direct combustion) were investigated for the green macroalgae, Ulva lactuca. The algae were cultivated in a land based facility demonstrating a production potential of 45T (TS) ha(-1) y(-1). Biogas production from fresh and macerated U. lactuca yielded up to 271 ml CH(4) g(-1) VS, which is in the range of the methane production from cattle manure and land based energy crops, such as grass-clover. Drying of the biomass resulted in a 5-9-fold increase in weight specific methane production compared to wet biomass. Ash and alkali contents are the main challenges in the use of U. lactuca for direct combustion. Application of a bio-refinery concept could increase the economical value of the U. lactuca biomass as well as improve its suitability for production of bioenergy.
Water Research | 2003
M. Del Bubba; Carlos A. Arias; Hans Brix
The P-adsorption capacities of 13 Danish sands were studied by short-term isotherm batch experiments and related to the physico-chemical characteristics of the sands. The maximum P-adsorption capacities (Q) and P-binding energy constants (b) were calculated using the Langmuir-isotherm model. The Freundlich model was also used, but it was not useful for the description of adsorption phenomena per se since it fitted well P-removal data even if precipitation of P-salts occurred simultaneously. The Langmuir model described the data well (R(2)=0.90-0.99) when precipitation of phosphates did not occur and seems therefore to be useful for describing the adsorption processes per se. The relationships between maximum sorption capacities and physico-chemical characteristics of the sands were investigated using classical univariate and partial least squares regression analyses. Among the physico-chemical properties of the sands, Ca and Mg content, grain size, porosity, bulk density and hydraulic conductivity were significantly related (P<0.1) to the maximum adsorption capacity as estimated by the Langmuir model. Using the maximum P-adsorption capacities, it was estimated how long the P-removal can be sustained with the different sands in subsurface flow constructed reed beds. If the most efficient sand for P-adsorption was used, the adsorption capacity would be used up after about 1 year, while, for the less efficient sands, the P-retention would go on for about 2 months. This suggests that, in order to sustain a long-term P-removal in subsurface flow constructed reed beds, precipitation reactions of insoluble P-salts should be promoted. P-binding energy constants were not significantly related to the physico-chemical properties of the sands, except the Ca content, which showed, however, a low correlation coefficient.
Water Research | 2009
Víctor Matamoros; Carlos A. Arias; Hans Brix; Josep M. Bayona
Occurrence and removal efficiencies of 13 pharmaceuticals and personal care products (PPCPs) as well as BOD(5), TSS and NH(4)(+) were evaluated for the first time in thirteen onsite household secondary wastewater treatment systems, including two compact biofilters followed by Filtralite-P filter units, two biological sand filters, five horizontal subsurface flow and four vertical flow constructed wetlands. As expected, all systems removed TSS and BOD(5) efficiently (>95% removal). The PPCP removal efficiencies exceeded 80% with the exception of carbamazepine, diclofenac and ketoprofen because of their more recalcitrant characteristics. Despite no statistical differences in the PPCP removal were observed between the different systems evaluated, the vegetated vertical flow constructed wetlands which had unsaturated flow and hence better oxygenation, appeared consistently to perform better in terms of PPCP removal efficiency. The combined effects of vegetation and unsaturated water flow provide a higher tolerance to variations in loading rate and a consistent removal rate.
Chemosphere | 2012
Víctor Matamoros; Loc Xuan Nguyen; Carlos A. Arias; Victòria Salvadó; Hans Brix
Microcosm wetland systems (5 L containers) planted with Salvinia molesta, Lemna minor, Ceratophyllum demersum, and Elodea canadensis were investigated for the removal of diclofenac, triclosan, naproxen, ibuprofen, caffeine, clofibric acid and MCPA. After 38 days of incubation, 40-99% of triclosan, diclofenac, and naproxen were removed from the planted and unplanted reactors. In covered control reactors no removal was observed. Caffeine and ibuprofen were removed from 40% to 80% in planted reactors whereas removals in control reactors were much lower (2-30%). Removal of clofibric acid and MCPA were negligible in both planted and unplanted reactors. The findings suggested that triclosan, diclofenac, and naproxen were removed predominantly by photodegradation, whereas caffeine and naproxen were removed by biodegradation and/or plant uptake. Pseudo-first-order removal rate constants estimated from nonlinear regressions of time series concentration data were used to describe the contaminant removals. Removal rate constants ranged from 0.003 to 0.299 d(-1), with half-lives from 2 to 248 days. The formation of two major degradation products from ibuprofen, carboxy-ibuprofen and hydroxy-ibuprofen, and a photodegradation product from diclofenac, 1-(8-Chlorocarbazolyl)acetic acid, were followed as a function of time. This study emphasizes that plants contribute to the elimination capacity of microcontaminants in wetlands systems through biodegradation and uptake processes.
Water Research | 2014
B. Adrados; Olga Sánchez; Carlos A. Arias; Eloy Bécares; Liseloth Garrido; Jordi Mas; Hans Brix; Jordi Morató
The prokaryotic microbial communities (Bacteria and Archaea) of three different systems operating in Denmark for the treatment of domestic wastewater (horizontal flow constructed wetlands (HFCW), vertical flow constructed wetlands (VFCW) and biofilters (BF)) was analysed using endpoint PCR followed by Denaturing Gradient Gel Electrophoresis (DGGE). Further sequencing of the most representative bacterial bands revealed that diverse and distinct bacterial communities were found in each system unit, being γ-Proteobacteria and Bacteroidetes present mainly in all of them, while Firmicutes was observed in HFCW and BF. Members of the Actinobacteria group, although found in HFCW and VFCW, seemed to be more abundant in BF units. Finally, some representatives of α, β and δ-Proteobacteria, Acidobacteria and Chloroflexi were also retrieved from some samples. On the other hand, a lower archaeal diversity was found in comparison with the bacterial population. Cluster analysis of the DGGE bacterial band patterns showed that community structure was related to the design of the treatment system and the organic matter load, while no clear relation was established between the microbial assemblage and the wastewater influent.
Chemosphere | 2012
Víctor Matamoros; Carlos A. Arias; Loc Xuan Nguyen; Victòria Salvadó; Hans Brix
Pollution mitigation is an important target for restored wetlands, and although there is much information in relation to nutrient removal, little attention has been paid to emerging contaminants. This paper reports on the occurrence and attenuation capacity of 17 emerging contaminants in a restored wetland and two rivers in North-East Denmark. The compounds belong to the groups of pharmaceuticals, fragrances, antiseptics, fire retardants, pesticides, and plasticizers. Concentrations in surface waters ranged from 2 to 1476 ng L(-1). The compounds with the highest concentrations were diclofenac, 2-methyl-4-chlorophenoxyacetic acid (MCPA), caffeine, and tris(2-chloroethyl) phosphate (TCEP). The herbicide concentrations increased after a rain-fall event, demonstrating the agricultural run-off origin of these compounds, whereas the concentration of the other emerging contaminants was rather conservative. The mitigation capacity of the restored wetland for the compounds ranged from no attenuation to 84% attenuation (19% on average). Hence, restored wetlands may be considered as a feasible alternative for mitigating emerging contaminants from river waters.
Journal of Environmental Science and Health Part A-toxic\/hazardous Substances & Environmental Engineering | 2005
Carlos A. Arias; Hans Brix; E. Marti
Abstract It is widely documented that vertical flow constructed wetlands are efficient for producing well nitrified effluent. However, because the treated effluent is oxygen saturated and has a low availability of carbon, the removal of total nitrogen is limited. We hypothesize that by recycling the fully nitrified effluent to the pretreatment unit and the sedimentation tank (where conditions are favorable for denitrification) the removal of total nitrogen from the wastewater can be enhanced. In order to assess the effects of recycling volumes, we monitored the nitrogen removal in an experimental vertical flow constructed wetland, consisting of a 2 m3 sedimentation tank, two vertical flow beds of 10 and 5 m2, and the necessary pumping equipment and controllers to manage the loading and recycling volumes. The system was loaded with approximately 0.5 m3 d−1, and the recycling volumes evaluated were equal to the loading rate (100% recycling), as well as twice (200%) and three times (300%) the loading. The system produced a fully nitrified effluent independent of recycling rate. However, recycling increased removal of total-N in the system from ca. 1% removal when there was no recycling to 52%, 66%, and 68% removal with 100, 200, and 300% recycling, respectively. The optimal recycling rate seems to be 100–200%. At lower recycling rates, the removal of total-N was poor, and at higher recycling rates, the system became hydraulically overloaded, compromising both the denitrification capacity of the sedimentation tank and the nitrification capacity of the vertical bed.
Chemosphere | 2016
Tao Lv; Yang Zhang; Monica Escola Casas; Pedro N. Carvalho; Carlos A. Arias; Kai Bester; Hans Brix
Pollution from pesticide residues in aquatic environments is of increasing concern. Imazalil and tebuconazole, two commonly used systemic pesticides, are water contaminants that can be removed by constructed wetlands. However, the phytoremediation capability of emergent wetland plants for imazalil and tebuconazole, especially the removal mechanisms involved, is poorly understood. This study compared the removal of both pesticides by four commonly used wetland plants, Typha latifolia, Phragmites australis, Iris pseudacorus and Juncus effusus, and aimed to understand the removal mechanisms involved. The plants were individually exposed to an initial concentration of 10 mg/L in hydroponic solution. At the end of the 24-day study period, the tebuconazole removal efficiencies were relatively lower (25%-41%) than those for imazalil (46%-96%) for all plant species studied. The removal of imazalil and tebuconazole fit a first-order kinetics model, with the exception of tebuconazole removal in solutions with I. pseudacorus. Changes in the enantiomeric fraction for imazalil and tebuconazole were detected in plant tissue but not in the hydroponic solutions; thus, the translocation and degradation processes were enantioselective in the plants. At the end of the study period, the accumulation of imazalil and tebuconazole in plant tissue was relatively low and constituted 2.8-14.4% of the total spiked pesticide in each vessel. Therefore, the studied plants were able to not only take up the pesticides but also metabolise them.
Journal of Environmental Science and Health Part A-toxic\/hazardous Substances & Environmental Engineering | 2012
Darja Istenič; Carlos A. Arias; Jes Vollertsen; Asbjørn Haaning Nielsen; Tove Wium-Andersen; Thorkild Hvitved-Jacobsen; Hans Brix
Dissolved and colloidal bound pollutants are generally poorly removed from stormwater in wet detention ponds. These fractions are, however, the most bio-available, and therefore three wet detention ponds were amended with planted sand filters, sorption filters and addition of precipitation chemicals to enhance the removal of dissolved pollutants and pollutants associated with fine particles and colloids. The three systems treated runoff from industrial, residential and combined (residential and highway) catchments and had permanent volumes of 1,990, 6,900 and 2,680 m3, respectively. The treatment performance of the ponds for elimination of total suspended solids (TSS), total nitrogen (Tot-N), total phosphorous (Tot-P), PO4-P, Pb, Zn, Cd, Ni, Cr, Cu, Hg were within the range typically reported for wet detention ponds, but the concentrations of most of the pollutants were efficiently reduced by the planted sand filters at the outlets. The sorption filters contributed to further decrease the concentration of PO4-P from 0.04 ± 0.05 to 0.01 ± 0.01 mg L−1 and were also efficient in removing heavy metals. Dosing of iron sulphate to enrich the bottom sediment with iron and dosing of aluminium salts to the inlet water resulted in less growth of phytoplankton, but treatment performance was not significantly affected. Heavy metals (Pb, Zn, Cd, Ni, Cr and Cu) accumulated in the sediment of the ponds. The concentrations of Zn, Ni, Cu and Pb in the roots of the wetland plants were generally correlated to the concentrations in the sediments. Among 13 plant species investigated, Rumex hydrolapathum accumulated the highest concentrations of heavy metals in the roots (Concentration Factor (CF) of 4.5 and 5.9 for Zn and Ni, respectively) and Iris pseudacorus the lowest (CF < 1). The translocation of heavy metals from roots to the aboveground tissues of plants was low. Therefore the potential transfer of heavy metals from the metal-enriched sediment to the surrounding ecosystem via plant uptake and translocation is negligible.