Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carlos A. Barrero is active.

Publication


Featured researches published by Carlos A. Barrero.


Journal of Biological Chemistry | 2007

Genetically Altered Expression of Spermidine/Spermine N1-Acetyltransferase Affects Fat Metabolism in Mice via Acetyl-CoA

Jason Jell; Salim Merali; Mary L. Hensen; Richard Mazurchuk; Joseph A. Spernyak; Paula Diegelman; Nicholas Kisiel; Carlos A. Barrero; Kristin K. Deeb; Leena Alhonen; Mulchand S. Patel; Carl W. Porter

The acetylating enzyme, spermidine/spermine N1-acetyltransferase, participates in polyamine homeostasis by regulating polyamine export and catabolism. Previously, we reported that overexpression of the enzyme in cultured tumor cells and mice activates metabolic flux through the polyamine pathway and depletes the N1-acetyltransferase coenzyme and fatty acid precursor, acetyl-CoA. Here, we investigate this possibility in spermidine/spermine N1-acetyltransferase transgenic mice in which the enzyme is systemically overexpressed and in spermidine/spermine N1-acetyltransferase knock-out mice. Tissues of the former were characterized by increased N1-acetyltransferase activity, a marked elevation in tissue and urinary acetylated polyamines, a compensatory increase in polyamine biosynthetic enzyme activity, and an increase in metabolic flux through the polyamine pathway. These polyamine effects were accompanied by a decrease in white adipose acetyl- and malonyl-CoA pools, a major (20-fold) increase in glucose and palmitate oxidation, and a distinctly lean phenotype. In SSAT-ko mice, the opposite relationship between polyamine and fat metabolism was observed. In the absence of N1-acetylation of polyamines, there was a shift in urinary and tissue polyamines indicative of a decline in metabolic flux. This was accompanied by an increase in white adipose acetyl- and malonyl-CoA pools, a decrease in adipose palmitate and glucose oxidation, and an accumulation of body fat. The latter was further exaggerated under a high fat diet, where knock-out mice gained twice as much weight as wild-type mice. A model is proposed whereby the expression status of spermidine/spermine N1-acetyltransferase alters body fat accumulation by metabolically modulating tissue acetyl- and malonyl-CoA levels, thereby influencing fatty acid biosynthesis and oxidation.


Cell Reports | 2016

MCUR1 Is a Scaffold Factor for the MCU Complex Function and Promotes Mitochondrial Bioenergetics

Dhanendra Tomar; Zhiwei Dong; Santhanam Shanmughapriya; Diana A. Koch; Toby Thomas; Nicholas E. Hoffman; Shrishiv A. Timbalia; Samuel J. Goldman; Sarah L. Breves; Daniel P. Corbally; Neeharika Nemani; Joseph P. Fairweather; Allison R. Cutri; Xue-Qian Zhang; Jianliang Song; Fabián Jaña; Jianhe Huang; Carlos A. Barrero; Joseph E. Rabinowitz; Timothy S. Luongo; Sarah M. Schumacher; Michael E. Rockman; Alexander Dietrich; Salim Merali; Jeffrey L. Caplan; Peter B. Stathopulos; Rexford S. Ahima; Joseph Y. Cheung; Steven R. Houser; Walter J. Koch

Mitochondrial Ca(2+) Uniporter (MCU)-dependent mitochondrial Ca(2+) uptake is the primary mechanism for increasing matrix Ca(2+) in most cell types. However, a limited understanding of the MCU complex assembly impedes the comprehension of the precise mechanisms underlying MCU activity. Here, we report that mouse cardiomyocytes and endothelial cells lacking MCU regulator 1 (MCUR1) have severely impaired [Ca(2+)]m uptake and IMCU current. MCUR1 binds to MCU and EMRE and function as a scaffold factor. Our protein binding analyses identified the minimal, highly conserved regions of coiled-coil domain of both MCU and MCUR1 that are necessary for heterooligomeric complex formation. Loss of MCUR1 perturbed MCU heterooligomeric complex and functions as a scaffold factor for the assembly of MCU complex. Vascular endothelial deletion of MCU and MCUR1 impaired mitochondrial bioenergetics, cell proliferation, and migration but elicited autophagy. These studies establish the existence of a MCU complex that assembles at the mitochondrial integral membrane and regulates Ca(2+)-dependent mitochondrial metabolism.


Annals of Neurology | 2014

Homocysteine Exacerbates β-Amyloid Pathology, Tau Pathology, and Cognitive Deficit in a Mouse Model of Alzheimer Disease with Plaques and Tangles

Jian-Guo Li; Jin Chu; Carlos A. Barrero; Salim Merali; Domenico Praticò

High level of homocysteine (Hcy) is a recognized risk factor for developing Alzheimer disease (AD). However, the mechanisms involved are unknown. Previously, it was shown that high Hcy increases brain β‐amyloid (Aβ) levels in amyloid precursor protein transgenic mice, but no data are available on the effect that it may have on the other main pathologic features of AD such as tau.


Journal of Biological Chemistry | 2014

TRPM2 Channels Protect against Cardiac Ischemia-Reperfusion Injury ROLE OF MITOCHONDRIA

Barbara A. Miller; Nicholas E. Hoffman; Salim Merali; Xue-Qian Zhang; JuFang Wang; Sudarsan Rajan; Santhanam Shanmughapriya; Erhe Gao; Carlos A. Barrero; Karthik Mallilankaraman; Jianliang Song; Tongda Gu; Iwona Hirschler-Laszkiewicz; Walter J. Koch; Arthur M. Feldman; Muniswamy Madesh; Joseph Y. Cheung

Background: TRPM2 channels are present in the heart, but their function is unknown. Results: Genetic ablation of TRPM2 results in cardiac mitochondrial dysfunction, enhanced ROS production, and exacerbated cardiac ischemic injury. Conclusion: TRPM2 channels preserve cardiac mitochondrial bioenergetics and protect cardiac myocytes from ischemic injury. Significance: TRPM2 is a rational target for treatment of ischemic heart disease. Cardiac TRPM2 channels were activated by intracellular adenosine diphosphate-ribose and blocked by flufenamic acid. In adult cardiac myocytes the ratio of GCa to GNa of TRPM2 channels was 0.56 ± 0.02. To explore the cellular mechanisms by which TRPM2 channels protect against cardiac ischemia/reperfusion (I/R) injury, we analyzed proteomes from WT and TRPM2 KO hearts subjected to I/R. The canonical pathways that exhibited the largest difference between WT-I/R and KO-I/R hearts were mitochondrial dysfunction and the tricarboxylic acid cycle. Complexes I, III, and IV were down-regulated, whereas complexes II and V were up-regulated in KO-I/R compared with WT-I/R hearts. Western blots confirmed reduced expression of the Complex I subunit and other mitochondria-associated proteins in KO-I/R hearts. Bioenergetic analyses revealed that KO myocytes had a lower mitochondrial membrane potential, mitochondrial Ca2+ uptake, ATP levels, and O2 consumption but higher mitochondrial superoxide levels. Additionally, mitochondrial Ca2+ uniporter (MCU) currents were lower in KO myocytes, indicating reduced mitochondrial Ca2+ uptake was likely due to both lower ψm and MCU activity. Similar to isolated myocytes, O2 consumption and ATP levels were also reduced in KO hearts. Under a simulated I/R model, aberrant mitochondrial bioenergetics was exacerbated in KO myocytes. Reactive oxygen species levels were also significantly higher in KO-I/R compared with WT-I/R heart slices, consistent with mitochondrial dysfunction in KO-I/R hearts. We conclude that TRPM2 channels protect the heart from I/R injury by ameliorating mitochondrial dysfunction and reducing reactive oxygen species levels.


Science Translational Medicine | 2015

Excessive caloric intake acutely causes oxidative stress, GLUT4 carbonylation, and insulin resistance in healthy men

Guenther Boden; Carol J. Homko; Carlos A. Barrero; T. Peter Stein; Xinhua Chen; Peter Cheung; Chiara Fecchio; Sarah Koller; Salim Merali

Acute overnutrition in healthy men caused rapid weight gain and insulin resistance, as well as oxidative stress. The irresistible effects of overfeeding Obesity is very common in the United States and worldwide, and it is associated with a host of health problems collectively known as the metabolic syndrome. Insulin resistance is a key component of this syndrome, but the mechanism by which obesity promotes insulin resistance is not yet fully understood. Boden et al. studied a group of six healthy men who were subjected to overnutrition for 1 week while performing no physical activity. In that time, the men gained an average of 3.5 kg and showed signs of insulin resistance as well as oxidative stress. This process was associated with inactivation of GLUT4, a major insulin-facilitated glucose transporter, suggesting a potential approach for the development of future therapeutic agents. Obesity-linked insulin resistance greatly increases the risk for type 2 diabetes, hypertension, dyslipidemia, and non-alcoholic fatty liver disease, together known as the metabolic or insulin resistance syndrome. How obesity promotes insulin resistance remains incompletely understood. Plasma concentrations of free fatty acids and proinflammatory cytokines, endoplasmic reticulum ( ER) stress, and oxidative stress are all elevated in obesity and have been shown to induce insulin resistance. However, they may be late events that only develop after chronic excessive nutrient intake. The nature of the initial event that produces insulin resistance at the beginning of excess caloric intake and weight gain remains unknown. We show that feeding healthy men with ~6000 kcal/day of the common U.S. diet [~50% carbohydrate (CHO), ~ 35% fat, and ~15% protein] for 1 week produced a rapid weight gain of 3.5 kg and the rapid onset (after 2 to 3 days) of systemic and adipose tissue insulin resistance and oxidative stress but no inflammatory or ER stress. In adipose tissue, the oxidative stress resulted in extensive oxidation and carbonylation of numerous proteins, including carbonylation of GLUT4 near the glucose transport channel, which likely resulted in loss of GLUT4 activity. These results suggest that the initial event caused by overnutrition may be oxidative stress, which produces insulin resistance, at least in part, via carbonylation and oxidation-induced inactivation of GLUT4.


Vaccine | 2003

A highly infective Plasmodium vivax strain adapted to Aotus monkeys: Quantitative haematological and molecular determinations useful for P. vivax malaria vaccine development

Yago Pico de Coaña; Josefa Rodrı́guez; Eduar Guerrero; Carlos A. Barrero; Raul Rodriguez; Marcela Mendoza; Manuel A. Patarroyo

The New World primate Aotus nancymaae is susceptible to infection by the human malaria parasite Plasmodium vivax and has therefore been recommended by the World Health Organization as a model for malaria vaccine candidate evaluation. We report the isolation, adaptation, titration and genetic characterization of a P. vivax wild strain in splenectomized A. nancymaae monkeys. Parasitemia remained high after 22 passages, reaching 7.88% by Giemsa and Acridine Orange staining and Real-Time PCR determination, making this P. vivax strain a highly infective and reliable asset to be used in P. vivax biological studies and vaccine development.


PLOS ONE | 2013

HIV-1 Vpr modulates macrophage metabolic pathways: a SILAC-based quantitative analysis.

Carlos A. Barrero; Prasun K. Datta; Satarupa Sen; Satish L. Deshmane; Shohreh Amini; Kamel Khalili; Salim Merali

Human immunodeficiency virus type 1 encoded viral protein Vpr is essential for infection of macrophages by HIV-1. Furthermore, these macrophages are resistant to cell death and are viral reservoir. However, the impact of Vpr on the macrophage proteome is yet to be comprehended. The goal of the present study was to use a stable-isotope labeling by amino acids in cell culture (SILAC) coupled with mass spectrometry-based proteomics approach to characterize the Vpr response in macrophages. Cultured human monocytic cells, U937, were differentiated into macrophages and transduced with adenovirus construct harboring the Vpr gene. More than 600 proteins were quantified in SILAC coupled with LC-MS/MS approach, among which 136 were significantly altered upon Vpr overexpression in macrophages. Quantified proteins were selected and clustered by biological functions, pathway and network analysis using Ingenuity computational pathway analysis. The proteomic data illustrating increase in abundance of enzymes in the glycolytic pathway (pentose phosphate and pyruvate metabolism) was further validated by western blot analysis. In addition, the proteomic data demonstrate down regulation of some key mitochondrial enzymes such as glutamate dehydrogenase 2 (GLUD2), adenylate kinase 2 (AK2) and transketolase (TKT). Based on these observations we postulate that HIV-1 hijacks the macrophage glucose metabolism pathway via the Vpr-hypoxia inducible factor 1 alpha (HIF-1 alpha) axis to induce expression of hexokinase (HK), glucose-6-phosphate dehyrogenase (G6PD) and pyruvate kinase muscle type 2 (PKM2) that facilitates viral replication and biogenesis, and long-term survival of macrophages. Furthermore, dysregulation of mitochondrial glutamate metabolism in macrophages can contribute to neurodegeneration via neuroexcitotoxic mechanisms in the context of NeuroAIDS.


Journal of Proteome Research | 2012

Assessment of Two Immunodepletion Methods: Off-Target Effects and Variations in Immunodepletion Efficiency May Confound Plasma Proteomics

Bhavinkumar B. Patel; Carlos A. Barrero; Alan S. Braverman; Phillip D. Kim; Kelly A. Jones; Dian Er Chen; Russell P. Bowler; Salim Merali; Steven G. Kelsen; Anthony T. Yeung

Immunodepletion of abundant plasma proteins increases the depth of proteome penetration by mass spectrometry. However, the nature and extent of immunodepletion and the effect of off-target depletion on the quantitative comparison of the residual proteins have not been critically addressed. We performed mass spectrometry label-free quantitation to determine which proteins were immunodepleted and by how much. Two immunodepletion resins were compared: Qproteome (Qiagen) which removes albumin+immunoglobulins and Seppro IgY14+SuperMix (Sigma-Aldrich) which removes 14 target proteins plus a number of unidentified proteins. Plasma collected by P100 proteomic plasma collection tubes (BD) from 20 human subjects was individually immunodepleted to minimize potential variability, prior to pooling. The abundant proteins were quantified better when using only albumin+immunoglobulins removal (Qproteome), while lower abundance proteins were evaluated better using exhaustive immunodepletion (Seppro IgY14+SuperMix). The latter resin removed at least 155 proteins, 38% of the plasma proteome in protein number and 94% of plasma protein in mass. The depth of immunodepletion likely accounts for the effectiveness of this resin in revealing low abundance proteins. However, the more profound immunodepletion achieved with the IgY14+SuperMix may lead to false-positive fold-changes between comparison groups if the reproducibility and efficiency of the depletion of a given protein are not considered.


Obesity | 2011

Infusion of glucose and lipids at physiological rates causes acute endoplasmic reticulum stress in rat liver.

Guenther Boden; Weiwei Song; Xunbao Duan; Peter Cheung; Karen Kresge; Carlos A. Barrero; Salim Merali

Endoplasmic reticulum (ER) stress has recently been implicated as a cause for obesity‐related insulin resistance; however, what causes ER stress in obesity has remained uncertain. Here, we have tested the hypothesis that macronutrients can cause acute (ER) stress in rat liver. Examined were the effects of intravenously infused glucose and/or lipids on proximal ER stress sensor activation (PERK, eIF2‐α, ATF4, Xbox protein 1 (XBP1s)), unfolded protein response (UPR) proteins (GRP78, calnexin, calreticulin, protein disulphide isomerase (PDI), stress kinases (JNK, p38 MAPK) and insulin signaling (insulin/receptor substrate (IRS) 1/2 associated phosphoinositol‐3‐kinase (PI3K)) in rat liver. Glucose and/or lipid infusions, ranging from 23.8 to 69.5 kJ/4 h (equivalent to between ∼17% and ∼50% of normal daily energy intake), activated the proximal ER stress sensor PERK and ATF6 increased the protein abundance of calnexin, calreticulin and PDI and increased two GRP78 isoforms. Glucose and glucose plus lipid infusions induced comparable degrees of ER stress, but only infusions containing lipid activated stress kinases (JNK and p38 MAPK) and inhibited insulin signaling (PI3K). In summary, physiologic amounts of both glucose and lipids acutely increased ER stress in livers 12‐h fasted rats and dependent on the presence of fat, caused insulin resistance. We conclude that this type of acute ER stress is likely to occur during normal daily nutrient intake.


Journal of Biological Chemistry | 2014

A Splice Variant of the Human Ion Channel TRPM2 Modulates Neuroblastoma Tumor Growth through Hypoxia-inducible Factor (HIF)-1/2α

Shu-jen Chen; Nicholas E. Hoffman; Santhanam Shanmughapriya; Lei Bao; Kerry Keefer; Kathleen Conrad; Salim Merali; Yoshinori Takahashi; Thomas Abraham; Iwona Hirschler-Laszkiewicz; JuFang Wang; Xue-Qian Zhang; Jianliang Song; Carlos A. Barrero; Yuguang Shi; Yuka Imamura Kawasawa; Michael G. Bayerl; Tianyu Sun; Mustafa Barbour; Hong-Gang Wang; Muniswamy Madesh; Joseph Y. Cheung; Barbara A. Miller

Background: TRPM2 channels play an essential role in cell death following oxidative stress. Results: Dominant negative TRPM2-S decreases growth of neuroblastoma xenografts and increases doxorubicin sensitivity through modulation of HIF-1/2α expression, mitophagy, and mitochondrial function. Conclusion: TRPM2 is important for neuroblastoma growth and viability through modulation of HIF-1/2α. Significance: Modulation of TRPM2 may be a novel approach in cancer therapeutics. The calcium-permeable ion channel TRPM2 is highly expressed in a number of cancers. In neuroblastoma, full-length TRPM2 (TRPM2-L) protected cells from moderate oxidative stress through increased levels of forkhead box transcription factor 3a (FOXO3a) and superoxide dismutase 2. Cells expressing the dominant negative short isoform (TRPM2-S) had reduced FOXO3a and superoxide dismutase 2 levels, reduced calcium influx in response to oxidative stress, and enhanced reactive oxygen species, leading to decreased cell viability. Here, in xenografts generated with SH-SY5Y neuroblastoma cells stably expressing TRPM2 isoforms, growth of tumors expressing TRPM2-S was significantly reduced compared with tumors expressing TRPM2-L. Expression of hypoxia-inducible factor (HIF)-1/2α was significantly reduced in TRPM2-S-expressing tumor cells as was expression of target proteins regulated by HIF-1/2α including those involved in glycolysis (lactate dehydrogenase A and enolase 2), oxidant stress (FOXO3a), angiogenesis (VEGF), mitophagy and mitochondrial function (BNIP3 and NDUFA4L2), and mitochondrial electron transport chain activity (cytochrome oxidase 4.1/4.2 in complex IV). The reduction in HIF-1/2α was mediated through both significantly reduced HIF-1/2α mRNA levels and increased levels of von Hippel-Lindau E3 ligase in TRPM2-S-expressing cells. Inhibition of TRPM2-L by pretreatment with clotrimazole or expression of TRPM2-S significantly increased sensitivity of cells to doxorubicin. Reduced survival of TRPM2-S-expressing cells after doxorubicin treatment was rescued by gain of HIF-1 or -2α function. These data suggest that TRPM2 activity is important for tumor growth and for cell viability and survival following doxorubicin treatment and that interference with TRPM2-L function may be a novel approach to reduce tumor growth through modulation of HIF-1/2α, mitochondrial function, and mitophagy.

Collaboration


Dive into the Carlos A. Barrero's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge