Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carlos A. Castro is active.

Publication


Featured researches published by Carlos A. Castro.


Stem Cell Research | 2009

Enhancement of human embryonic stem cell pluripotency through inhibition of the mitochondrial respiratory chain.

Sandra Varum; Olga Momčilović; Carlos A. Castro; Ahmi Ben-Yehudah; João Ramalho-Santos; Christopher S. Navara

Human embryonic stem cell (hESC) pluripotency has been reported by several groups to be best maintained by culture under physiological oxygen conditions. Building on that finding, we inhibited complex III of the mitochondrial respiratory chain using antimycin A or myxothiazol to examine if specifically targeting the mitochondria would have a similar beneficial result for the maintenance of pluripotency. hESCs grown in the presence of 20 nM antimycin A maintained a compact morphology with high nuclear/cytoplasmic ratios. Furthermore, real-time PCR analysis demonstrated that the levels of Nanog mRNA were elevated 2-fold in antimycin A-treated cells. Strikingly, antimycin A was also able to replace bFGF in the media without compromising pluripotency, as long as autocrine bFGF signaling was maintained. Further analysis using low-density quantitative PCR arrays showed that antimycin A treatment reduced the expression of genes associated with differentiation, possibly acting through a ROS-mediated pathway. These results demonstrate that modulation of mitochondrial function results in increased pluripotency of the cell population, and sheds new light on the mechanisms and signaling pathways modulating hESC pluripotency.


Journal of Clinical Investigation | 2013

Eliminating malignant contamination from therapeutic human spermatogonial stem cells.

Serena L. Dovey; Hanna Valli; Brian P. Hermann; Meena Sukhwani; Julia Donohue; Carlos A. Castro; Tianjiao Chu; Joseph S. Sanfilippo; Kyle E. Orwig

Spermatogonial stem cell (SSC) transplantation has been shown to restore fertility in several species and may have application for treating some cases of male infertility (e.g., secondary to gonadotoxic therapy for cancer). To ensure safety of this fertility preservation strategy, methods are needed to isolate and enrich SSCs from human testis cell suspensions and also remove malignant contamination. We used flow cytometry to characterize cell surface antigen expression on human testicular cells and leukemic cells (MOLT-4 and TF-1a). We demonstrated via FACS that EpCAM is expressed by human spermatogonia but not MOLT-4 cells. In contrast, HLA-ABC and CD49e marked >95% of MOLT-4 cells but were not expressed on human spermatogonia. A multiparameter sort of MOLT-4-contaminated human testicular cell suspensions was performed to isolate EpCAM+/HLA-ABC-/CD49e- (putative spermatogonia) and EpCAM-/HLA-ABC+/CD49e+ (putative MOLT-4) cell fractions. The EpCAM+/HLA-ABC-/CD49e- fraction was enriched for spermatogonial colonizing activity and did not form tumors following human-to-nude mouse xenotransplantation. The EpCAM-/HLA-ABC+/CD49e+ fraction produced tumors following xenotransplantation. This approach could be generalized with slight modification to also remove contaminating TF-1a leukemia cells. Thus, FACS provides a method to isolate and enrich human spermatogonia and remove malignant contamination by exploiting differences in cell surface antigen expression.


Fertility and Sterility | 2014

Fluorescence- and magnetic-activated cell sorting strategies to isolate and enrich human spermatogonial stem cells

Hanna Valli; Meena Sukhwani; Serena L. Dovey; Karen A. Peters; Julia Donohue; Carlos A. Castro; Tianjiao Chu; Gary R. Marshall; Kyle E. Orwig

OBJECTIVE To determine the molecular characteristics of human spermatogonia and optimize methods to enrich spermatogonial stem cells (SSCs). DESIGN Laboratory study using human tissues. SETTING Research institute. PATIENT(S) Healthy adult human testicular tissue. INTERVENTION(S) Human testicular tissue was fixed or digested with enzymes to produce a cell suspension. Human testis cells were fractionated by fluorescence-activated cell sorting (FACS) and magnetic-activated cell sorting (MACS). MAIN OUTCOME MEASURE(S) Immunostaining for selected markers, human-to-nude mouse xenotransplantation assay. RESULT(S) Immunohistochemistry costaining revealed the relative expression patterns of SALL4, UTF1, ZBTB16, UCHL1, and ENO2 in human undifferentiated spermatogonia as well as the extent of overlap with the differentiation marker KIT. Whole mount analyses revealed that human undifferentiated spermatogonia (UCHL1+) were typically arranged in clones of one to four cells whereas differentiated spermatogonia (KIT+) were typically arranged in clones of eight or more cells. The ratio of undifferentiated-to-differentiated spermatogonia is greater in humans than in rodents. The SSC colonizing activity was enriched in the THY1dim and ITGA6+ fractions of human testes sorted by FACS. ITGA6 was effective for sorting human SSCs by MACS; THY1 and EPCAM were not. CONCLUSION(S) Human spermatogonial differentiation correlates with increased clone size and onset of KIT expression, similar to rodents. The undifferentiated-to-differentiated developmental dynamics in human spermatogonia is different than rodents. THY1, ITGA6, and EPCAM can be used to enrich human SSC colonizing activity by FACS, but only ITGA6 is amenable to high throughput sorting by MACS.


Journal of Clinical Investigation | 2015

Med12 gain-of-function mutation causes leiomyomas and genomic instability

Priya Mittal; Yonghyun Shin; Svetlana A. Yatsenko; Carlos A. Castro; Urvashi Surti; Aleksandar Rajkovic

Uterine leiomyomas are benign tumors that can cause pain, bleeding, and infertility in some women. Mediator complex subunit 12 (MED12) exon 2 variants are associated with uterine leiomyomas; however, the causality of MED12 variants, their genetic mode of action, and their role in genomic instability have not been established. Here, we generated a mouse model that conditionally expresses a Med12 missense variant (c.131G>A) in the uterus and demonstrated that this alteration alone promotes uterine leiomyoma formation and hyperplasia in both WT mice and animals harboring a uterine mesenchymal cell-specific Med12 deletion. Compared with WT animals, expression of Med12 c.131G>A in conditional Med12-KO mice resulted in earlier onset of leiomyoma lesions that were also greater in size. Moreover, leiomyomatous, Med12 c.131G>A variant-expressing uteri developed chromosomal rearrangements. Together, our results show that the common human leiomyoma-associated MED12 variant can cause leiomyomas in mice via a gain of function that drives genomic instability, which is frequently observed in human leiomyomas.


Frontiers in Neuroscience | 2010

Mapping primary gyrogenesis during fetal development in primate brains: high-resolution in utero structural MRI of fetal brain development in pregnant baboons.

Peter Kochunov; Carlos A. Castro; Duff M. Davis; Donald J. Dudley; Jordan Brewer; Yi Zhang; Christopher D. Kroenke; David Purdy; Peter T. Fox; Calvin Simerly; Gerald Schatten

The global and regional changes in the fetal cerebral cortex in primates were mapped during primary gyrification (PG; weeks 17–25 of 26 weeks total gestation). Studying pregnant baboons using high-resolution MRI in utero, measurements included cerebral volume, cortical surface area, gyrification index and length and depth of 10 primary cortical sulci. Seven normally developing fetuses were imaged in two animals longitudinally and sequentially. We compared these results to those on PG that from the ferret studies and analyzed them in the context of our recent studies of phylogenetics of cerebral gyrification. We observed that in both primates and non-primates, the cerebrum undergoes a very rapid transformation into the gyrencephalic state, subsequently accompanied by an accelerated growth in brain volume and cortical surface area. However, PG trends in baboons exhibited some critical differences from those observed in ferrets. For example, in baboons, the growth along the long (length) axis of cortical sulci was unrelated to the growth along the short (depth) axis and far outpaced it. Additionally, the correlation between the rate of growth along the short sulcal axis and heritability of sulcal depth was negative and approached significance (r = −0.60; p < 0.10), while the same trend for long axis was positive and not significant (p = 0.3; p = 0.40). These findings, in an animal that shares a highly orchestrated pattern of PG with humans, suggest that ontogenic processes that influence changes in sulcal length and depth are diverse and possibly driven by different factors in primates than in non-primates.


IEEE Signal Processing Magazine | 2015

Automated Histology Analysis: Opportunities for signal processing

Michael T. McCann; John A. Ozolek; Carlos A. Castro; Bahram Parvin; Jelena Kovacevic

Histology is the microscopic inspection of plant or animal tissue. It is a critical component in diagnostic medicine and a tool for studying the pathogenesis and biology of processes such as cancer and embryogenesis. Tissue processing for histology has become increasingly automated, drastically increasing the speed at which histology labs can produce tissue slides for viewing. Another trend is the digitization of these slides, allowing them to be viewed on a computer rather than through a microscope. Despite these changes, much of the routine analysis of tissue sections remains a painstaking, manual task that can only be completed by highly trained pathologists at a high cost per hour. There is, therefore, a niche for image analysis methods that can automate some aspects of this analysis. These methods could also automate tasks that are prohibitively time-consuming for humans, e.g., discovering new disease markers from hundreds of whole-slide images (WSIs) or precisely quantifying tissues within a tumor.


international symposium on biomedical imaging | 2010

Automatic identification and delineation of germ layer components in H&E stained images of teratomas derived from human and nonhuman primate embryonic stem cells

Ramamurthy Bhagavatula; Matthew Fickus; W. Kelly; Chenlei Guo; John A. Ozolek; Carlos A. Castro; Jelena Kovacevic

We present a methodology for the automatic identification and delineation of germ-layer components in H&E stained images of teratomas derived from human and nonhuman primate embryonic stem cells. A knowledge and understanding of the biology of these cells may lead to advances in tissue regeneration and repair, the treatment of genetic and developmental syndromes, and drug testing and discovery. As a teratoma is a chaotic organization of tissues derived from the three primary embryonic germ layers, H&E teratoma images often present multiple tissues, each of having complex and unpredictable positions, shapes, and appearance with respect to each individual tissue as well as with respect to other tissues. While visual identification of these tissues is time-consuming, it is surprisingly accurate, indicating that there exist enough visual cues to accomplish the task. We propose automatic identification and delineation of these tissues by mimicking these visual cues. We use pixel-based classification, resulting in an encouraging range of classification accuracies from 74.9% to 93.2% for 2- to 5-tissue classification experiments at different scales.


Stem Cells | 2007

Pedigreed Primate Embryonic Stem Cells Express Homogeneous Familial Gene Profiles

Christopher S. Navara; Jocelyn Danielle Mich-Basso; Carrie J. Redinger; Ahmi Ben-Yehudah; Ethan Jacoby; Elizabeta Kovkarova-Naumovski; Meena Sukhwani; Kyle E. Orwig; Naftali Kaminski; Carlos A. Castro; Calvin Simerly; Gerald Schatten

Human embryonic stem cells (hESCs) hold great biomedical promise, but experiments comparing them produce heterogeneous results, raising concerns regarding their reliability and utility, although these variations may result from their disparate and anonymous origins. To determine whether primate ESCs have intrinsic biological limitations compared with mouse ESCs, we examined expression profiles and pluripotency of newly established nonhuman primate ESC (nhpESCs). Ten pedigreed nhpESC lines, seven full siblings (fraternal quadruplets and fraternal triplets), and nine half siblings were derived from 41 rhesus embryos; derivation success correlated with embryo quality. Each line has been growing continuously for ∼1 year with stable diploid karyotype (except for one stable trisomy) and expresses in vitro pluripotency markers, and eight have already formed teratomas. Unlike the heterogeneous gene expression profiles found among hESCs, these nhpESCs display remarkably homogeneous profiles (>97%), with full‐sibling lines nearly identical (>98.2%). Female nhpESCs express genes distinct from their brother lines; these sensitive analyses are enabled because of the very low background differences. Experimental comparisons among these primate ESCs may prove more reliable than currently available hESCs, since they are akin to inbred mouse strains in which genetic variables are also nearly eliminated. Finally, contrasting the biological similarities among these lines with the heterogeneous hESCs might suggest that additional, more uniform hESC lines are justified. Taken together, pedigreed primate ESCs display homogeneous and reliable expression profiles. These similarities to mouse ESCs suggest that heterogeneities found among hESCs likely result from their disparate origins rather than intrinsic biological limitations with primate embryonic stem cells.


Cellular Reprogramming | 2012

Human Amniotic Epithelial Cells are Reprogrammed More Efficiently by Induced Pluripotency than Adult Fibroblasts

Charles A. Easley; Toshio Miki; Carlos A. Castro; John A. Ozolek; Crescenzio F. Minervini; Ahmi Ben-Yehudah; Gerald Schatten

Cellular reprogramming from adult somatic cells into an embryonic cell-like state, termed induced pluripotency, has been achieved in several cell types. However, the ability to reprogram human amniotic epithelial cells (hAECs), an abundant cell source derived from discarded placental tissue, has only recently been investigated. Here we show that not only are hAECs easily reprogrammed into induced pluripotent stem cells (AE-iPSCs), but hAECs reprogram faster and more efficiently than adult and neonatal somatic dermal fibroblasts. Furthermore, AE-iPSCs express higher levels of NANOG and OCT4 compared to human foreskin fibroblast iPSCs (HFF1-iPSCs) and express decreased levels of genes associated with differentiation, including NEUROD1 and SOX17, markers of neuronal differentiation. To elucidate the mechanism behind the higher reprogramming efficiency of hAECs, we analyzed global DNA methylation, global histone acetylation, and the mitochondrial DNA A3243G point mutation. Whereas hAECs show no differences in global histone acetylation or mitochondrial point mutation accumulation compared to adult and neonatal dermal fibroblasts, hAECs demonstrate a decreased global DNA methylation compared to dermal fibroblasts. Likewise, quantitative gene expression analyses show that hAECs endogenously express OCT4, SOX2, KLF4, and c-MYC, all four factors used in cellular reprogramming. Thus, hAECs represent an ideal cell type for testing novel approaches for generating clinically viable iPSCs and offer significant advantages over postnatal cells that more likely may be contaminated by environmental exposures and infectious agents.


Human Reproduction | 2008

Profound phenotypic variation among mice deficient in the maintenance of genomic imprints.

Marc Toppings; Carlos A. Castro; Parker H. Mills; Bonnie Reinhart; Gerald Schatten; Eric T. Ahrens; J. Richard Chaillet; Jacquetta M. Trasler

BACKGROUND An alteration in the mechanism that maintains the monoallelic, imprinted expression of genes can result in their biallelic expression and lead to disruptions in fetal development. Here, we examined the consequences of a loss of maintenance methylation at one specific stage of preimplantation, induced by a deficiency of the oocyte-derived Dnmt1o protein and known to produce biallelic expression of imprinted genes. METHODS Phenotypes of mid-gestation Dnmt1o-deficient mouse embryos were assessed by a scoring system based on the developmental stage of 17 anatomical features and by magnetic resonance microscopy. RESULTS Many mid-gestation embryos developing without Dnmt1o protein exhibited significant developmental delays of multiple organ systems (P < 0.05) and a wide variety of morphologic anomalies compared with wild-type embryos. Most of the remaining mid-gestation Dnmt1o-deficient embryos appeared normal. CONCLUSIONS These findings indicate that a profound range of gestational phenotypes can be induced by the loss of a single protein at a specific preimplantation developmental stage. This is best explained by the formation of epigenetic mosaic early embryos, composed of somatic cells with different spectra of normal intact genomic imprints. These findings have important implications for understanding the types of embryonic phenotypes related to the disruption of inherited imprints, and thus may provide a model of altered imprinting in humans. In particular, because Dnmt1o functions in the preimplantation embryo, a complete or partial loss of Dnmt1o function may play a role in epigenetic abnormalities seen in assisted reproduction technology births.

Collaboration


Dive into the Carlos A. Castro's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

John A. Ozolek

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Calvin Simerly

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Jelena Kovacevic

Carnegie Mellon University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Meena Sukhwani

University of Pittsburgh

View shared research outputs
Top Co-Authors

Avatar

Kyle E. Orwig

University of Pittsburgh

View shared research outputs
Researchain Logo
Decentralizing Knowledge