Carlos A. G. Soares
Federal University of Rio de Janeiro
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Carlos A. G. Soares.
PLOS ONE | 2009
Joyce C. Yang; Ramana Madupu; A. Scott Durkin; Nathan A. Ekborg; Chandra Sekhar Pedamallu; Jessica B. Hostetler; Diana Radune; Bradley S. Toms; Bernard Henrissat; Pedro M. Coutinho; Sandra Schwarz; Lauren Field; Amaro E. Trindade-Silva; Carlos A. G. Soares; Sherif I. Elshahawi; Amro Hanora; Eric W. Schmidt; Margo G. Haygood; Janos Posfai; Jack S. Benner; Catherine L. Madinger; John Nove; Brian P. Anton; Kshitiz Chaudhary; Jeremy M. Foster; Alex Holman; Sanjay Kumar; Philip A. Lessard; Yvette A. Luyten; Barton E. Slatko
Here we report the complete genome sequence of Teredinibacter turnerae T7901. T. turnerae is a marine gamma proteobacterium that occurs as an intracellular endosymbiont in the gills of wood-boring marine bivalves of the family Teredinidae (shipworms). This species is the sole cultivated member of an endosymbiotic consortium thought to provide the host with enzymes, including cellulases and nitrogenase, critical for digestion of wood and supplementation of the hosts nitrogen-deficient diet. T. turnerae is closely related to the free-living marine polysaccharide degrading bacterium Saccharophagus degradans str. 2–40 and to as yet uncultivated endosymbionts with which it coexists in shipworm cells. Like S. degradans, the T. turnerae genome encodes a large number of enzymes predicted to be involved in complex polysaccharide degradation (>100). However, unlike S. degradans, which degrades a broad spectrum (>10 classes) of complex plant, fungal and algal polysaccharides, T. turnerae primarily encodes enzymes associated with deconstruction of terrestrial woody plant material. Also unlike S. degradans and many other eubacteria, T. turnerae dedicates a large proportion of its genome to genes predicted to function in secondary metabolism. Despite its intracellular niche, the T. turnerae genome lacks many features associated with obligate intracellular existence (e.g. reduced genome size, reduced %G+C, loss of genes of core metabolism) and displays evidence of adaptations common to free-living bacteria (e.g. defense against bacteriophage infection). These results suggest that T. turnerae is likely a facultative intracellular ensosymbiont whose niche presently includes, or recently included, free-living existence. As such, the T. turnerae genome provides insights into the range of genomic adaptations associated with intracellular endosymbiosis as well as enzymatic mechanisms relevant to the recycling of plant materials in marine environments and the production of cellulose-derived biofuels.
Proceedings of the National Academy of Sciences of the United States of America | 2013
Sherif I. Elshahawi; Amaro E. Trindade-Silva; Amro Hanora; Andrew W. Han; Malem Flores; Vinicius F. Vizzoni; Carlos G. Schrago; Carlos A. G. Soares; Gisela P. Concepcion; Dan L. Distel; Eric W. Schmidt; Margo G. Haygood
Shipworms are marine wood-boring bivalve mollusks (family Teredinidae) that harbor a community of closely related Gammaproteobacteria as intracellular endosymbionts in their gills. These symbionts have been proposed to assist the shipworm host in cellulose digestion and have been shown to play a role in nitrogen fixation. The genome of one strain of Teredinibacter turnerae, the first shipworm symbiont to be cultivated, was sequenced, revealing potential as a rich source of polyketides and nonribosomal peptides. Bioassay-guided fractionation led to the isolation and identification of two macrodioloide polyketides belonging to the tartrolon class. Both compounds were found to possess antibacterial properties, and the major compound was found to inhibit other shipworm symbiont strains and various pathogenic bacteria. The gene cluster responsible for the synthesis of these compounds was identified and characterized, and the ketosynthase domains were analyzed phylogenetically. Reverse-transcription PCR in addition to liquid chromatography and high-resolution mass spectrometry and tandem mass spectrometry revealed the transcription of these genes and the presence of the compounds in the shipworm, suggesting that the gene cluster is expressed in vivo and that the compounds may fulfill a specific function for the shipworm host. This study reports tartrolon polyketides from a shipworm symbiont and unveils the biosynthetic gene cluster of a member of this class of compounds, which might reveal the mechanism by which these bioactive metabolites are biosynthesized.
Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology | 1995
F. V. de Araujo; Carlos A. G. Soares; Allen N. Hagler; Leda C. Mendonça-Hagler
The ascomycetous yeast communities associated with 3 bivalve mollusk, and 4 crab species were studied in the mangrove at Coroa Grande on Sepetiba Bay in Rio de Janeiro, Brazil. These were made up mostly of diverse but sparse and apparently allochtonous yeast populations. The striking exception was a prevalent population of the speciesKluyveromyces aestuarii, which predominated the yeast communities of 2 detritus feeding crabs,Sesarma rectum andUca spp., and the shipwormNeoteredo reynei. However,K. aestuarii was absent from the omnivorous crabsAratus pisonii andGoniopsis cruentata, and the clamAnomalocardia brasiliana, and was rare in the clamTagelus plebeius from mostly submerged more sandy sediments.Pichia membranaefaciens, Candida valida-like,Candida krusei, Candida sorbosa, Candida colliculosa-like,Candida famata-like,Kloeckera spp.,Candida guilliermondii, Candida albicans, Candida silvae, Geotrichum spp.,Rhodotorula spp.,Cryptococcus spp., and the methylotrophic yeastCandida boidinii were frequently isolated. The 322 ascomycetous yeast cultures representing 252 isolates from crabs and mollusks were classified as 40 species that fit standard descriptions, and 44 putative new species. The ascomycetous yeast communities of the mangrove ecosystem include many new biotypes that require better taxonomic definition.
Microbial Ecology | 2011
Erik Machado-Ferreira; Gabrielle Dietrich; Andrias Hojgaard; Michael L. Levin; Joseph Piesman; Nordin S. Zeidner; Carlos A. G. Soares
Members of the Coxiella genus are intracellular bacteria that can infect a variety of animals including humans. A symbiotic Coxiella was recently described in Amblyomma americanum ticks in the Northern Hemisphere with no further investigations of other Amblyomma species in other geographic regions. These ixodid ticks represent a group of important vectors for human infectious agents. In the present work, we have demonstrated that symbiotic Coxiella (SCox) are widespread, occurring in South America and infecting 100% of all life stages and eggs of the Cayenne ticks Amblyomma cajennense from Brazil and the USA. Using light microscopy, in situ hybridization, and PCR, we demonstrated SCox in salivary glands, ovaries, and the intestines of A. cajennense. These symbionts are vertically and transtadially transmitted in laboratory reared A. cajennense, and quantitative PCR analyses indicate that SCox are more abundant in adult female ticks, reaching values corresponding to an 11×, 38×, and 200× increase in SCox 16S rRNA gene copy number in unfed females, compared to unfed nymphs, larvae, and eggs, respectively. Phylogenetic analyses showed distinct SCox subpopulations in the USA and Brazil and demonstrated that SCox bacteria do not group with pathogenic Coxiella burnetii.
Journal of Medical Entomology | 2009
Erik Machado-Ferreira; Joseph Piesman; Nordin S. Zeidner; Carlos A. G. Soares
ABSTRACT Ticks are vectors of a variety of pathogens, including Francisella tularensis. Bacteria in the genus Francisella have been identified mostly in the Northern Hemisphere and include tick endosymbionts. Francisella has never been described in Brazil, where Amblyomma spp. ticks are known as the vector of many bacterial zoonotic pathogens. In the present work, we have identified bacterial DNA sequences with identity to Francisella genes in Amblyomma dubitatum Neumann Dermacentor nitens (Neumann), and Rhipicephalus microplus (Canestrini) in Brazil. DNA fragments with homology to Francisella spp. 16S rDNA and the tul4 gene were polymerase chain reaction amplified from tick DNA samples collected in Minas Gerais and Mato Grosso states. These sequences were 96–99% identical to the reported sequences for Franeisella-like tick endosymbionts (FLEs). Sequences similar to the tularemia agent F. tularensis pathogenicity island gene iglC and its regulatory gene mglA also were identified in FLEs.
PLOS ONE | 2016
Franziska Szokoli; Elena Sabaneyeva; Michele Castelli; Sascha Krenek; Martina Schrallhammer; Carlos A. G. Soares; Inácio Domingos da Silva-Neto; Thomas U. Berendonk; Giulio Petroni
Recently, the family Midichloriaceae has been described within the bacterial order Rickettsiales. It includes a variety of bacterial endosymbionts detected in different metazoan host species belonging to Placozoa, Cnidaria, Arthropoda and Vertebrata. Representatives of Midichloriaceae are also considered possible etiological agents of certain animal diseases. Midichloriaceae have been found also in protists like ciliates and amoebae. The present work describes a new bacterial endosymbiont, “Candidatus Fokinia solitaria”, retrieved from three different strains of a novel Paramecium species isolated from a wastewater treatment plant in Rio de Janeiro (Brazil). Symbionts were characterized through the full-cycle rRNA approach: SSU rRNA gene sequencing and fluorescence in situ hybridization (FISH) with three species-specific oligonucleotide probes. In electron micrographs, the tiny rod-shaped endosymbionts (1.2 x 0.25–0.35 μm in size) were not surrounded by a symbiontophorous vacuole and were located in the peripheral host cytoplasm, stratified in the host cortex in between the trichocysts or just below them. Frequently, they occurred inside autolysosomes. Phylogenetic analyses of Midichloriaceae apparently show different evolutionary pathways within the family. Some genera, such as “Ca. Midichloria” and “Ca. Lariskella”, have been retrieved frequently and independently in different hosts and environmental surveys. On the contrary, others, such as Lyticum, “Ca. Anadelfobacter”, “Ca. Defluviella” and the presently described “Ca. Fokinia solitaria”, have been found only occasionally and associated to specific host species. These last are the only representatives in their own branches thus far. Present data do not allow to infer whether these genera, which we named “stand-alone lineages”, are an indication of poorly sampled organisms, thus underrepresented in GenBank, or represent fast evolving, highly adapted evolutionary lineages.
Journal of Medical Entomology | 2016
Leonardo Moerbeck; Vinicius F. Vizzoni; Erik Machado-Ferreira; Robson da Costa Cavalcante; Stefan Vilges de Oliveira; Carlos A. G. Soares; Marinete Amorim; Gilberto Salles Gazeta
Abstract Rickettsioses are re-emerging vector-borne zoonoses with a global distribution. Recently, Rickettsia sp. strain Atlantic rainforest has been associated with new human spotted-fever (SF) cases in Brazil, featuring particular clinical signs: eschar formation and lymphadenopathy. These cases have been associated with the tick species, Amblyomma ovale. From 2010 until 2015, the Brazilian Health Department confirmed 11 human SF cases in the Maciço de Baturité region, Ceará, Brazil. The present study reports the circulation of Rickettsia spp. in vectors from this entirely new endemic area for SF. A total of 1,727 ectoparasites were collected in this area from the environment, humans, and wild and domestic animals. Samples (n = 887) were screened by polymerase chain reaction (PCR), targeting the gltA and ompA rickettsial genes. Sequencing and phylogenetic analyses of gltA gene amplicons were carried out for 13 samples positive for both screening PCRs. Fragments of gltA and ompA from three samples were cloned, sequenced, and analyzed further. A. ovale and Rhipicephalus sanguineus specimens, collected from dogs, were found to be infected with Rickettsia sp. str. Atlantic rainforest, suggesting the importance of dogs in the epidemic cycle. Candidatus Rickettsia andeanae, Rickettsia felis, and Rickettsia bellii were also found infecting ticks and fleas in five municipalities, demonstrating the broad diversity of rickettsiae in circulation in the studied area. This study reports, for the first time, evidence of infection with Rickettsia sp. strain Atlantic rainforest in A. ovale and R. sanguineus in Ceará, and Ca. R. andeanae in an Atlantic rainforest environment of Brazil.
PLOS ONE | 2013
Andrew W. Han; Moriah Sandy; Brian Fishman; Amaro E. Trindade-Silva; Carlos A. G. Soares; Daniel L. Distel; Alison Butler; Margo G. Haygood
Shipworms are marine bivalve mollusks (Family Teredinidae) that use wood for shelter and food. They harbor a group of closely related, yet phylogenetically distinct, bacterial endosymbionts in bacteriocytes located in the gills. This endosymbiotic community is believed to support the hosts nutrition in multiple ways, through the production of cellulolytic enzymes and the fixation of nitrogen. The genome of the shipworm endosymbiont Teredinibacter turnerae T7901 was recently sequenced and in addition to the potential for cellulolytic enzymes and diazotrophy, the genome also revealed a rich potential for secondary metabolites. With nine distinct biosynthetic gene clusters, nearly 7% of the genome is dedicated to secondary metabolites. Bioinformatic analyses predict that one of the gene clusters is responsible for the production of a catecholate siderophore. Here we describe this gene cluster in detail and present the siderophore product from this cluster. Genes similar to the entCEBA genes of enterobactin biosynthesis involved in the production and activation of dihydroxybenzoic acid (DHB) are present in this cluster, as well as a two-module non-ribosomal peptide synthetase (NRPS). A novel triscatecholate siderophore, turnerbactin, was isolated from the supernatant of iron-limited T. turnerae T7901 cultures. Turnerbactin is a trimer of N-(2,3-DHB)-L-Orn-L-Ser with the three monomeric units linked by Ser ester linkages. A monomer, dimer, dehydrated dimer, and dehydrated trimer of 2,3-DHB-L-Orn-L-Ser were also found in the supernatant. A link between the gene cluster and siderophore product was made by constructing a NRPS mutant, TtAH03. Siderophores could not be detected in cultures of TtAH03 by HPLC analysis and Fe-binding activity of culture supernatant was significantly reduced. Regulation of the pathway by iron is supported by identification of putative Fur box sequences and observation of increased Fe-binding activity under iron restriction. Evidence of a turnerbactin fragment was found in shipworm extracts, suggesting the production of turnerbactin in the symbiosis.
Genetics and Molecular Biology | 2009
Amaro E. Trindade-Silva; Erik Machado-Ferreira; Marcus Vinicius Xavier Senra; Vinicius F. Vizzoni; Luciana A. Yparraguirre; Orilio Leoncini; Carlos A. G. Soares
Nutrition in the Teredinidae family of wood-boring mollusks is sustained by cellulolytic/nitrogen fixing symbiotic bacteria of the Teredinibacter clade. The mangrove Teredinidae Neoteredo reynei is popularly used in the treatment of infectious diseases in the north of Brazil. In the present work, the symbionts of N. reynei, which are strictly confined to the hosts gills, were conclusively identified as Teredinibacter turnerae. Symbiont variants obtained in vitro were able to grow using casein as the sole carbon/nitrogen source and under reduced concentrations of NaCl. Furthermore, cellulose consumption in T. turnerae was clearly reduced under low salt concentrations. As a point of interest, we hereby report first hand that T. turnerae in fact exerts antibiotic activity. Furthermore, this activity was also affected by NaCl concentration. Finally, T. turnerae was able to inhibit the growth of Gram-negative and Gram-positive bacteria, this including strains of Sphingomonas sp., Stenotrophomonas maltophilia, Bacillus cereus and Staphylococcus sciuri. Our findings introduce new points of view on the ecology of T. turnerae, and suggest new biotechnological applications for this marine bacterium.
Emerging Infectious Diseases | 2014
Nicole O. Moura-Martiniano; Erik Machado-Ferreira; Karen M. Cardoso; Flávia de Sousa Gehrke; Marinete Amorim; Andréa C. Fogaça; Carlos A. G. Soares; Gilberto Salles Gazêta; Teresinha Tizu Sato Schumaker
Rickettsia rickettsii, R. felis, and R. parkeri, strain Atlantic rainforest, have been characterized after being found in areas to which Brazilian spotted fever (BSF) is endemic (1,2), which indicates the complexity of their epidemic and enzootic cycles. The Atlantic rain forest is one of the largest and richest biomes of Brazil, and antropic action has intensely influenced its transformation. Most BSF cases and all BSF-related deaths are recorded in this biome area. Many BSF cases were recorded in Paraiba do Sul river basin, one of the most urbanized and industrialized areas of Brazil. To better understand arthropod and Rickettsia diversity in this area,, we analyzed 2,076 arthropods from Rio de Janeiro state, Atlantic rain forest biome....(AU)