Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carlos A. Paladini is active.

Publication


Featured researches published by Carlos A. Paladini.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Disruption of NMDAR-dependent burst firing by dopamine neurons provides selective assessment of phasic dopamine-dependent behavior

Larry S. Zweifel; Jones G. Parker; Collin J. Lobb; Aundrea Rainwater; Valerie Z. Wall; Jonathan P. Fadok; Martin Darvas; Min J. Kim; Sheri J.Y. Mizumori; Carlos A. Paladini; Paul E. M. Phillips; Richard D. Palmiter

Midbrain dopamine (DA) neurons fire in 2 characteristic modes, tonic and phasic, which are thought to modulate distinct aspects of behavior. However, the inability to selectively disrupt these patterns of activity has hampered the precise definition of the function of these modes of signaling. Here, we addressed the role of phasic DA in learning and other DA-dependent behaviors by attenuating DA neuron burst firing and subsequent DA release, without altering tonic neural activity. Disruption of phasic DA was achieved by selective genetic inactivation of NMDA-type, ionotropic glutamate receptors in DA neurons. Disruption of phasic DA neuron activity impaired the acquisition of numerous conditioned behavioral responses, and dramatically attenuated learning about cues that predicted rewarding and aversive events while leaving many other DA-dependent behaviors unaffected.


Nature Neuroscience | 2001

Amphetamine selectively blocks inhibitory glutamate transmission in dopamine neurons

Carlos A. Paladini; Christopher D. Fiorillo; Hitoshi Morikawa; John T. Williams

Amphetamine is a highly addictive psychostimulant that promotes the release of the catecholamines dopamine and norepinephrine. Amphetamine-induced release of dopamine in the midbrain inhibits the activity of dopamine neurons through activation of D2 dopamine autoreceptors. Here we show that amphetamine may also excite dopamine neurons through modulation of glutamate neurotransmission. Amphetamine potently inhibits metabotropic glutamate receptor (mGluR)-mediated IPSPs in dopamine neurons, but has no effect on ionotropic glutamate receptor-mediated EPSCs. Amphetamine desensitizes the mGluR-mediated hyperpolarization through release of dopamine, activation of postsynaptic α1 adrenergic receptors, and suppression of InsP3-induced calcium release from internal stores. By selectively suppressing the inhibitory component of glutamate-mediated transmission, amphetamine may promote burst firing of dopamine neurons. Through this mechanism, amphetamine may enhance phasic release of dopamine, which is important in the neural processing of reward.


Journal of Neurophysiology | 2010

A dynamic role for GABA receptors on the firing pattern of midbrain dopaminergic neurons.

Collin J. Lobb; Charles J. Wilson; Carlos A. Paladini

Dopaminergic neurons are subject to a significant background GABAergic input in vivo. The presence of this GABAergic background might be expected to inhibit dopaminergic neuron firing. However, dopaminergic neurons are not all silent but instead fire in single-spiking and burst firing modes. Here we present evidence that phasic changes in the tonic activity of GABAergic afferents are a potential extrinsic mechanism that triggers bursts and pauses in dopaminergic neurons. We find that spontaneous single-spiking is more sensitive to activation of GABA receptors than phasic N-methyl-D-aspartate (NMDA)-mediated burst firing in rat slices (P15-P31). Because tonic activation of GABA(A) receptors has previously been shown to suppress burst firing in vivo, our results suggest that the activity patterns seen in vivo are the result of a balance between excitatory and inhibitory conductances that interact with the intrinsic pacemaking currents observed in slices. Using the dynamic clamp technique, we applied balanced, constant NMDA and GABA(A) receptor conductances into dopaminergic neurons in slices. Bursts could be produced by disinhibition (phasic removal of the GABA(A) receptor conductance), and these bursts had a higher frequency than bursts produced by the same NMDA receptor conductance alone. Phasic increases in the GABA(A) receptor conductance evoked pauses in firing. In contrast to NMDA receptor, application of constant AMPA and GABA(A) receptor conductances caused the cell to go into depolarization block. These results support a bidirectional mechanism by which GABAergic inputs, in balance with NMDA receptor-mediated excitatory inputs, control the firing pattern of dopaminergic neurons.


Neuroscience | 2011

Dynamic regulation of midbrain dopamine neuron activity: intrinsic, synaptic, and plasticity mechanisms.

Hitoshi Morikawa; Carlos A. Paladini

Although the roles of dopaminergic signaling in learning and behavior are well established, it is not fully understood how the activity of dopaminergic neurons is dynamically regulated under different conditions in a constantly changing environment. Dopamine neurons must integrate sensory, motor, and cognitive information online to inform the organism to pursue outcomes with the highest reward probability. In this article, we provide an overview of recent advances on the intrinsic, extrinsic (i.e., synaptic), and plasticity mechanisms controlling dopamine neuron activity, mostly focusing on mechanistic studies conducted using ex vivo brain slice preparations. We also hope to highlight some unresolved questions regarding information processing that takes place at dopamine neurons, thereby stimulating further investigations at different levels of analysis.


The Journal of Neuroscience | 2004

Noradrenergic inhibition of midbrain dopamine neurons.

Carlos A. Paladini; John T. Williams

Receptors that couple to phosphoinositide hydrolysis, which include metabotropic glutamate receptors (mGluRs) and muscarinic receptors, are known to either activate or inhibit the activity of dopamine cells depending on the pattern of receptor activation. Transient activation of α1 adrenoceptors with norepinephrine (NE) resulted in an outward current in midbrain dopamine neurons recorded in brain slices. The NE-mediated outward current was induced by activation of a potassium conductance through release of calcium from intracellular stores. Unlike the mGluR-mediated outward current, the outward current induced by α1 adrenoceptors often consisted of multiple peaks. Activation of α1 adrenoceptors also induced a wave of calcium release that spread through the soma and proximal dendrites without a decline in amplitude or rate of propagation and therefore differed qualitatively from that induced by mGluRs. Finally, the α1 adrenoceptor-activated outward current was more sensitive to the calcium store-depleting agents ryanodine and caffeine. Thus, although bothα1 adrenoceptors and mGluRs mobilize calcium from intracellular stores, the mechanisms and pools of calcium differ. The results suggest that noradrenergic innervation of dopamine cells can directly inhibit the activity of dopamine cells. Psychostimulants, such as amphetamine, will therefore have a direct effect on the firing pattern of dopamine neurons through a combination of actions on dopamine and α1 adrenoceptor activation.


The Journal of Neuroscience | 2009

An Intrinsic Neuronal Oscillator Underlies Dopaminergic Neuron Bursting

Christopher A. Deister; Mark A. Teagarden; Charles J. Wilson; Carlos A. Paladini

Dopaminergic neurons of the ventral midbrain fire high-frequency bursts when animals are presented with unexpected rewards, or stimuli that predict reward. To identify the afferents that can initiate bursting and establish therapeutic strategies for diseases affected by altered bursting, a mechanistic understanding of bursting is essential. Our results show that bursting is initiated by a specific interaction between the voltage sensitivity of NMDA receptors and voltage-gated ion channels that results in the activation of an intrinsic, action potential-independent, high-frequency membrane potential oscillation. We further show that the NMDA receptor is uniquely suited for this because of the rapid kinetics and voltage dependence imparted to it by Mg2+ ion block and unblock. This mechanism explains the discrete nature of bursting in dopaminergic cells and demonstrates how synaptic signals may be reshaped by local intrinsic properties of a neuron before influencing action potential generation.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Dopamine controls the firing pattern of dopamine neurons via a network feedback mechanism

Carlos A. Paladini; Siobhan Robinson; Hitoshi Morikawa; John T. Williams; Richard D. Palmiter

Changes in the firing pattern of midbrain dopamine neurons are thought to encode information for certain types of reward-related learning. In particular, the burst pattern of firing is predicted to result in more efficient dopamine release at target loci, which could underlie changes in synaptic plasticity. In this study, the effects of dopamine on the firing patterns of dopaminergic neurons in vivo and their electrophysiological characteristics in vitro were examined by using a genetic dopamine-deficient (DD) mouse model. Extracellular recordings in vivo showed that, although the firing pattern of dopamine neurons in normal mice included bursting activity, DD mice recordings showed only a single-spike pattern of activity with no bursts. Bursting was restored in DD mice after systemic administration of the dopamine precursor, l-3,4-dihydroxyphenylalanine (l-dopa). Whole-cell recordings in vitro demonstrated that the basic electrophysiology and pharmacology of dopamine neurons were identical between DD and control mice, except that amphetamine did not elicit a hyperpolarizing current in slices from DD mice. These data suggest that endogenously released dopamine plays a critical role in the afferent control of dopamine neuron bursting activity and that this control is exerted via a network feedback mechanism.


Neuroscience | 2007

Noradrenergic modulation of the hyperpolarization-activated cation current (Ih) in dopamine neurons of the ventral tegmental area

Francisco Arencibia-Albite; Carlos A. Paladini; John T. Williams; Carlos A. Jiménez-Rivera

Alterations in the state of excitability of midbrain dopamine (DA) neurons from the ventral tegmental area (VTA) may underlie changes in the synaptic plasticity of the mesocorticolimbic system. Here, we investigated norepinephrines (NE) regulation of VTA DA cell excitability by modulation of the hyperpolarization-activated cation current, Ih, with whole cell recordings in rat brain slices. Current clamp recordings show that NE (40 microM) hyperpolarizes spontaneously firing VTA DA cells (11.23+/-4 mV; n=8). In a voltage clamp, NE (40 microM) induces an outward current (100+/-24 pA; n=8) at -60 mV that reverses at about the Nernst potential for potassium (-106 mV). In addition, NE (40 microM) increases the membrane cord conductance (179+/-42%; n=10) and reduces Ih amplitude (68+/-3% of control at -120 mV; n=10). The noradrenergic alpha-1 antagonist prazosin (40 microM; n=5) or the alpha-2 antagonist yohimbine (40 microM; n=5) did not block NE effects. All NE-evoked events were blocked by the D2 antagonists sulpiride (1 microM) and eticlopride (100 nM) and no significant reduction of Ih took place in the presence of the potassium channel blocker BaCl2 (300 microM). Therefore, it is concluded that NE inhibition of Ih was due to an increase in membrane conductance by a nonspecific activation of D2 receptors that induce an outward potassium current and is not a result of a second messenger system acting on h-channels. The results also suggest that Ih channels are mainly located at dendrites of VTA DA cells and, thus, their inhibition may facilitate the transition from single-spike firing to burst firing and vice versa.


Journal of Computational Neuroscience | 2010

Regulation of firing frequency in a computational model of a midbrain dopaminergic neuron.

Anna Y. Kuznetsova; Marco A. Huertas; Alexey Kuznetsov; Carlos A. Paladini; Carmen C. Canavier

Dopaminergic (DA) neurons of the mammalian midbrain exhibit unusually low firing frequencies in vitro. Furthermore, injection of depolarizing current induces depolarization block before high frequencies are achieved. The maximum steady and transient rates are about 10 and 20 Hz, respectively, despite the ability of these neurons to generate bursts at higher frequencies in vivo. We use a three-compartment model calibrated to reproduce DA neuron responses to several pharmacological manipulations to uncover mechanisms of frequency limitation. The model exhibits a slow oscillatory potential (SOP) dependent on the interplay between the L-type Ca2+ current and the small conductance K+ (SK) current that is unmasked by fast Na+ current block. Contrary to previous theoretical work, the SOP does not pace the steady spiking frequency in our model. The main currents that determine the spontaneous firing frequency are the subthreshold L-type Ca2+ and the A-type K+ currents. The model identifies the channel densities for the fast Na+ and the delayed rectifier K+ currents as critical parameters limiting the maximal steady frequency evoked by a depolarizing pulse. We hypothesize that the low maximal steady frequencies result from a low safety factor for action potential generation. In the model, the rate of Ca2+ accumulation in the distal dendrites controls the transient initial frequency in response to a depolarizing pulse. Similar results are obtained when the same model parameters are used in a multi-compartmental model with a realistic reconstructed morphology, indicating that the salient contributions of the dendritic architecture have been captured by the simpler model.


The Journal of Neuroscience | 2013

Food Restriction Increases Glutamate Receptor-Mediated Burst Firing of Dopamine Neurons

Sarah Y. Branch; R. Brandon Goertz; Amanda L. Sharpe; Janie Pierce; Sudip Roy; Daijin Ko; Carlos A. Paladini; Michael J. Beckstead

Restriction of food intake increases the acquisition of drug abuse behavior and enhances the reinforcing efficacy of those drugs. However, the neurophysiological mechanisms responsible for the interactions between feeding state and drug use are largely unknown. Here we show that chronic mild food restriction increases the burst firing of dopamine neurons in the substantia nigra. Dopamine neurons from food-restricted mice exhibited increased burst firing in vivo, an effect that was enhanced by an injection of the psychomotor stimulant cocaine (10 mg/kg, i.p.). Food restriction also enhanced aspartic acid-induced burst firing of dopamine neurons in an ex vivo brain slice preparation, consistent with an adaptation occurring in the somatodendritic compartment and independent of a circuit mechanism. Enhanced burst firing persisted after 10 d of free feeding following chronic food restriction but was not observed following a single overnight fast. Whole-cell patch-clamp recordings indicated that food restriction also increased electrically evoked AMPAR/NMDAR ratios and increased D2 autoreceptor-mediated desensitization in dopamine neurons. These results identify dopamine neurons in the substantia nigra as a convergence point for the interactions between feeding state and drugs of abuse. Furthermore, increased glutamate transmission combined with decreased autoreceptor inhibition could work in concert to enhance drug efficacy in response to food restriction.

Collaboration


Dive into the Carlos A. Paladini's collaboration.

Top Co-Authors

Avatar

Charles J. Wilson

University of Texas at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Collin J. Lobb

University of Texas at San Antonio

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jorge A. Gomez

University of Texas at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Alyssa K Petko

University of Texas at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Daijin Ko

University of Texas at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Hitoshi Morikawa

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Matthew J. Wanat

University of Texas at San Antonio

View shared research outputs
Top Co-Authors

Avatar

Christopher A. Deister

University of Texas at San Antonio

View shared research outputs
Researchain Logo
Decentralizing Knowledge