Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carlos A. Rosa is active.

Publication


Featured researches published by Carlos A. Rosa.


Archive | 2006

Biodiversity and ecophysiology of yeasts

Carlos A. Rosa; Gábor Péter

1 Yeast Biodiversity: How Many and How Much?.- 2 Yeast Systematics and Phylogeny -- Implications of Molecular Identification Methods for Studies in Ecology.-3 Yeast Biodiversity and Culture Collections.- 4 Genomics and Biodiversity in Yeasts.- 5 Methods for Investigating Yeast Biodiversity.- 6 Sugar Metabolism in Yeasts: an Overview of Aerobic and Anaerobic Glucose Catabolism.- 7 Diversity of Nitrogen Metabolism Among Yeast Species: Regulatory and Evolutionary Aspects.- 8 Environmental Factors Influencing Yeasts.- 9 Yeast Responses to Stresses.- 10 Antagonistic Interactions Among Yeasts.- 11 Yeasts in Soil.- 12 Yeast Biodiversity in Freshwater, Marine and Deep-Sea Environments.- 13 Phylloplane Yeasts.- 14 Yeast and Invertebrate Associations.- 15 Yeasts in Extreme Environments.- 16 Yeast Biodiversity in the Antarctic.- 17 Yeast Biodiversity in Tropical Forests of Asia.- 18 Yeast Communities in Tropical Rain Forests in Brazil and other South American Ecosystems.- 19 The Biogeographic Diversity of Cactophilic Yeasts.- 20 Black Yeasts and Meristematic Fungi: Ecology, Diversity and Identification.- 21 Yeasts as Indicators of Environmental Quality.- 22 Yeast Biodiversity and Biotechnology


PLOS ONE | 2012

Bandoniozyma gen. nov., a Genus of Fermentative and Non-Fermentative Tremellaceous Yeast Species

Patricia Valente; Teun Boekhout; Melissa Fontes Landell; Juliana Crestani; Fernando C. Pagnocca; Lara Durães Sette; Michel R. Z. Passarini; Carlos A. Rosa; Luciana R. Brandão; Raphael Sanzio Pimenta; José R. A. Ribeiro; Karina Marques Garcia; Ching Fu Lee; Sung Oui Suh; Gábor Péter; Dénes Dlauchy; Jack W. Fell; Gloria Scorzetti; Bart Theelen; Marilene Henning Vainstein

Background Independent surveys across the globe led to the proposal of a new basidiomycetous yeast genus within the Bulleromyces clade of the Tremellales, Bandoniozyma gen. nov., with seven new species. Methodology/Principal Findings The species were characterized by multiple methods, including the analysis of D1/D2 and ITS nucleotide sequences, and morphological and physiological/biochemical traits. Most species can ferment glucose, which is an unusual trait among basidiomycetous yeasts. Conclusions/Significance In this study we propose the new yeast genus Bandoniozyma, with seven species Bandoniozyma noutii sp. nov. (type species of genus; CBS 8364T  =  DBVPG 4489T), Bandoniozyma aquatica sp. nov. (UFMG-DH4.20T  =  CBS 12527T  =  ATCC MYA-4876T), Bandoniozyma complexa sp. nov. (CBS 11570T  =  ATCC MYA-4603T  =  MA28aT), Bandoniozyma fermentans sp. nov. (CBS 12399T  =  NU7M71T  =  BCRC 23267T), Bandoniozyma glucofermentans sp. nov. (CBS 10381T  =  NRRL Y-48076T  =  ATCC MYA-4760T  =  BG 02-7-15-015A-1-1T), Bandoniozyma tunnelae sp. nov. (CBS 8024T  =  DBVPG 7000T), and Bandoniozyma visegradensis sp. nov. (CBS 12505T  =  NRRL Y-48783T  =  NCAIM Y.01952T).


Letters in Applied Microbiology | 2002

Removal of heavy metals by an Aspergillus terreus strain immobilized in a polyurethane matrix

Maristella A. Dias; I.C.A. Lacerda; P.F. Pimentel; H.F. de Castro; Carlos A. Rosa

Aims: The aim was to investigate the biosorption of chromium, nickel and iron from metallurgical effluents, produced by a steel foundry, using a strain of Aspergillus terreus immobilized in polyurethane foam.


Memorias Do Instituto Oswaldo Cruz | 2003

Screening of Brazilian basidiomycetes for antimicrobial activity

Luiz H. Rosa; Kátia Maria Gomes Machado; Camila Cristina Jacob; Marina Capelari; Carlos A. Rosa; Carlos L. Zani

A total of 103 isolates of basidiomycetes, representing 84 species from different Brazilian ecosystems, were evaluated for their antifungal and antibacterial activity in a panel of pathogenic and non-pathogenic microorganisms. Tissue plugs of the fruiting bodies were cultivated in liquid media and the whole culture extracted with ethyl acetate. Crude extracts from Agaricus cf. nigrecentulus, Agrocybe perfecta, Climacodon pulcherrimus, Gloeoporus thelephoroides, Hexagonia hydnoides, Irpex lacteus, Leucoagaricus cf. cinereus, Marasmius cf. bellus, Marasmius sp., Nothopanus hygrophanus, Oudemansiella canarii, Pycnoporus sanguineus, Phellinus sp., and Tyromyces duracinus presented significant activity against one or more of the target microorganisms. Eight isolates were active only against bacteria while three inhibited exclusively the growth of fungi. Two extracts presented wide antimicrobial spectrum and were active against both fungi and bacteria. Differences in the bioactivity of extracts obtained from isolates from the same species were observed.


Fems Yeast Research | 2003

Yeast communities associated with stingless bees

Carlos A. Rosa; Marc-André Lachance; Janaína de Oliveira Costa Silva; Ana Teixeira; Marjorie Mendes Marini; Yasmine Antonini; Rogério Parentoni Martins

The yeast communities associated with the stingless bees Tetragonisca angustula, Melipona quadrifasciata and Frieseomelitta varia were studied. The bees T. angustula and F. varia showed a strong association with the yeast Starmerella meliponinorum. M. quadrifasciata more frequently carried a species related to Candida apicola, but also vectored low numbers of S. meliponinorum. Some of the yeasts isolated from adult bees were typical of species known to occur in flowers. Other yeast species found in adult bees were more typical of those found in the phylloplane. S. meliponinorum and the species in the C. apicola complex, also part of the Starmerella clade, may have a mutualistic relationship with the bees studied. Many yeasts in that group are often found in bees or substrates visited by bees, suggesting that a mutually beneficial interaction exists between them.


Systematic and Applied Microbiology | 2002

Yeasts associated with fresh and frozen pulps of Brazilian tropical fruits.

Rita de Cássia Trindade; Maria Aparecida de Resende; Cláudia Márcia de Resende Silva; Carlos A. Rosa

The occurrence of yeasts on ripe fruits and frozen pulps of pitanga (Eugenia uniflora L), mangaba (Hancornia speciosa Gom.), umbu (Spondias tuberosa Avr. Cam.), and acerola (Malpighia glaba L) was verified. The incidence of proteolytic, pectinolytic, and mycocinogenic yeasts on these communities was also determined. A total of 480 colonies was isolated and grouped in 405 different strains. These corresponded to 42 ascomycetous and 28 basidiomycetous species. Candida sorbosivorans, Pseudozyma antarctica, C. spandovensis-like, C. spandovensis, Kloeckera apis, C. parapsilosis, Rhodotorula graminis, Kluyveromyces marxianus, Cryptococcus laurentii, Metchnikowia sp (isolated only from pitanga ripe fruits), Issatchenkia occidentalis and C. krusei (isolated only from mangaba frozen pulps), were the most frequent species. The yeast communities from pitanga ripe fruits exhibited the highest frequency of species, followed by communities from acerola ripe fruits and mangaba frozen pulps. Yeast communities from frozen pulp and ripe fruits of umbu had the lowest number of species. Except the yeasts from pitanga, yeast communities from frozen pulp exhibited higher number of yeasts than ripe fruit communities. Mycocinogenic yeasts were found in all of the substrates studied except in communities from umbu ripe fruits and pitanga frozen pulps. Most of the yeasts found to produce mycocins were basidiomycetes and included P. antarctica, Cryptococcus albidus, C. bhutanensis-like, R. graminis and R. mucilaginosa-like from pitanga ripe fruits as well as black yeasts from pitanga and acerola ripe fruits. The umbu frozen pulps community had the highest frequency of proteolytic species. Yeasts able to hydrolyse casein at pH 5.0 represented 38.5% of the species isolated. Thirty-seven percent of yeast isolates were able to hydrolyse casein at pH 7.0. Pectinolytic yeasts were found in all of the communities studied, excepted for those of umbu frozen pulps. The highest frequency of pectinolytic activity was found in mangaba frozen pulp communities. Around 30% of all isolates produced pectinases. The ability to split arbutin was observed in all communities ranging from 8% in yeasts from pitanga frozen pulps to 40.6% in acerola ripe fruit communities. Among 432 species tested, 125 were active for beta-glucosidase production, and Kloeckera apis, P. antarctica, C. sorbosivorans, and C. spandovensis-like were the most active species.


FEMS Microbiology Ecology | 2010

Endophytic fungi community associated with the dicotyledonous plant Colobanthus quitensis (Kunth) Bartl. (Caryophyllaceae) in Antarctica

Luiz H. Rosa; Mariana de Lourdes Almeida Vieira; Iara Furtado Santiago; Carlos A. Rosa

This work describes the distribution and diversity of fungal endophytes associated with leaves of Colobanthus quitensis, a dicotyledonous plant that lives in Antarctica. A total of 188 fungal isolates were obtained from six different sites located across a 25.5-km transect through Admiralty Bay, at King George Island. The ITS1-5.8S-ITS2 nuclear ribosomal gene was sequenced and the endophytic fungi were identified as species belonging to the genera Aspergillus, Cadophora, Davidiella, Entrophospora, Fusarium, Geomyces, Gyoerffyella, Microdochium, Mycocentrospora, and Phaeosphaeria. Davidiella tassiana was the prevalent species with 20.2% abundance. The endophytic fungal community showed low richness and high dominance indexes. Eleven endophytic taxa (58%) were fungi able to produce melanin in their hyphae, which may confer resistance against freezing temperatures and high rates of UV radiation and may increase their fitness in the extreme conditions of the Antarctic environment. In addition, phytopathogenic and decomposer species associated with healthy leaves of C. quitensis were found. The results obtained in this work show that C. quitensis is an interesting reservoir of saprobic and pathogenic fungal species, and could be a community model for further ecological and evolutionary studies, as well as studies of the adaptation mechanisms these microorganisms have to the extreme conditions in Antarctica.


Proceedings of the National Academy of Sciences of the United States of America | 2016

Comparative genomics of biotechnologically important yeasts

Robert Riley; Sajeet Haridas; Kenneth H. Wolfe; Mariana R. Lopes; Chris Todd Hittinger; Markus Göker; Asaf Salamov; Jennifer H. Wisecaver; Tanya M. Long; Christopher H. Calvey; Andrea Aerts; Kerrie Barry; Cindy Choi; Alicia Clum; Aisling Y. Coughlan; Shweta Deshpande; Alexander P. Douglass; Sara J. Hanson; Hans-Peter Klenk; Kurt LaButti; Alla Lapidus; Erika Lindquist; Anna Lipzen; Jan P. Meier-Kolthoff; Robin A. Ohm; Robert Otillar; Jasmyn Pangilinan; Yi Peng; Antonis Rokas; Carlos A. Rosa

Significance The highly diverse Ascomycete yeasts have enormous biotechnological potential. Collectively, these yeasts convert a broad range of substrates into useful compounds, such as ethanol, lipids, and vitamins, and can grow in extremes of temperature, salinity, and pH. We compared 29 yeast genomes with the goal of correlating genetics to useful traits. In one rare species, we discovered a genetic code that translates CUG codons to alanine rather than canonical leucine. Genome comparison enabled correlation of genes to useful metabolic properties and showed the synteny of the mating-type locus to be conserved over a billion years of evolution. Our study provides a roadmap for future biotechnological exploitations. Ascomycete yeasts are metabolically diverse, with great potential for biotechnology. Here, we report the comparative genome analysis of 29 taxonomically and biotechnologically important yeasts, including 16 newly sequenced. We identify a genetic code change, CUG-Ala, in Pachysolen tannophilus in the clade sister to the known CUG-Ser clade. Our well-resolved yeast phylogeny shows that some traits, such as methylotrophy, are restricted to single clades, whereas others, such as l-rhamnose utilization, have patchy phylogenetic distributions. Gene clusters, with variable organization and distribution, encode many pathways of interest. Genomics can predict some biochemical traits precisely, but the genomic basis of others, such as xylose utilization, remains unresolved. Our data also provide insight into early evolution of ascomycetes. We document the loss of H3K9me2/3 heterochromatin, the origin of ascomycete mating-type switching, and panascomycete synteny at the MAT locus. These data and analyses will facilitate the engineering of efficient biosynthetic and degradative pathways and gateways for genomic manipulation.


Journal of Applied Microbiology | 2000

Yeast communities and genetic polymorphism of Saccharomyces cerevisiae strains associated with artisanal fermentation in Brazil

Carla Pataro; J.B. Guerra; M.L. Petrillo‐Peixoto; L.C. Mendonça‐Hagler; Valter R. Linardi; Carlos A. Rosa

Yeast communities and genetic polymorphism of prevalent Saccharomyces cerevisiae strains isolated from the spontaneous fermentation of the sugarcane juice during the production of aguardente in three distilleries in the state of Minas Gerais, Brazil, were studied. S. cerevisiae was the prevalent species during the process of aguardente production, but Schizosaccharomyces pombe was predominant in old fermentations in one distillery. Transient yeast species were found in a variable number, probably due to the daily addition of sugarcane juice, and they were different for each of the three distilleries studied. PFGE and PCR analysis of the predominant strains of S. cerevisiae isolated from the fermented must showed a high degree of genetic polymorphism among the three distilleries. A high molecular variability of S. cerevisae strains was also observed among strains isolated from the same vat at different fermentation ages. Our results showed that there was a succession of geneticly different strains of S. cerevisae during the process of aguardente production.


Fems Yeast Research | 2009

Spathaspora arborariae sp. nov., a d-xylose-fermenting yeast species isolated from rotting wood in Brazil

Raquel M. Cadete; Renata O. Santos; Monaliza A. Melo; Adriane Mouro; Davi Gonçalves; Boris U. Stambuk; Fátima de Cássia Oliveira Gomes; Marc-André Lachance; Carlos A. Rosa

Four strains of a new yeast species were isolated from rotting wood from two sites in an Atlantic Rain Forest and a Cerrado ecosystem in Brazil. The analysis of the sequences of the D1/D2 domains of the large-subunit rRNA gene showed that this species belongs to the Spathaspora clade. The new species ferments D-xylose efficiently and is related to Candida jeffriesii and Spathaspora passalidarum, both of which also ferment D-xylose. Similar to S. passalidarum, the new species produces unconjugated asci with a single greatly elongated ascospore with curved ends. The type strain of Spathaspora arborariae sp. nov. is UFMG-HM19.1A(T) (=CBS11463(T)=NRRL Y-48658(T)).

Collaboration


Dive into the Carlos A. Rosa's collaboration.

Top Co-Authors

Avatar

Marc-André Lachance

University of Western Ontario

View shared research outputs
Top Co-Authors

Avatar

Luiz H. Rosa

Universidade Federal de Minas Gerais

View shared research outputs
Top Co-Authors

Avatar

Paula B. Morais

Federal University of Tocantins

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fátima de Cássia Oliveira Gomes

Centro Federal de Educação Tecnológica de Minas Gerais

View shared research outputs
Top Co-Authors

Avatar

Susana Johann

Universidade Federal de Minas Gerais

View shared research outputs
Top Co-Authors

Avatar

Raquel M. Cadete

Universidade Federal de Minas Gerais

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Raphael Sanzio Pimenta

Federal University of Tocantins

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge