Carlos Bustamante
Stanford University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Carlos Bustamante.
Science | 1996
Steven B. Smith; Yujia Cui; Carlos Bustamante
Single molecules of double-stranded DNA (dsDNA) were stretched with force-measuring laser tweezers. Under a longitudinal stress of ∼65 piconewtons (pN), dsDNA molecules in aqueous buffer undergo a highly cooperative transition into a stable form with 5.8 angstroms rise per base pair, that is, 70% longer than B-form dsDNA. When the stress was relaxed below 65 pN, the molecules rapidly and reversibly contracted to their normal contour lengths. This transition was affected by changes in the ionic strength of the medium and the water activity or by cross-linking of the two strands of dsDNA. Individual molecules of single-stranded DNA were also stretched giving a persistence length of 7.5 angstroms and a stretch modulus of 800 pN. The overstretched form may play a significant role in the energetics of DNA recombination.
Science | 2012
Jacob A. Tennessen; Abigail W. Bigham; Timothy D. O'Connor; Wenqing Fu; Eimear E. Kenny; Simon Gravel; Sean McGee; Ron Do; Xiaoming Liu; Goo Jun; Hyun Min Kang; Daniel M. Jordan; Suzanne M. Leal; Stacey Gabriel; Mark J. Rieder; Gonçalo R. Abecasis; David Altshuler; Deborah A. Nickerson; Eric Boerwinkle; Shamil R. Sunyaev; Carlos Bustamante; Michael J. Bamshad; Joshua M. Akey
A Deep Look Into Our Genes Recent debates have focused on the degree of genetic variation and its impact upon health at the genomic level in humans (see the Perspective by Casals and Bertranpetit). Tennessen et al. (p. 64, published online 17 May), looking at all of the protein-coding genes in the human genome, and Nelson et al. (p. 100, published online 17 May), looking at genes that encode drug targets, address this question through deep sequencing efforts on samples from multiple individuals. The findings suggest that most human variation is rare, not shared between populations, and that rare variants are likely to play a role in human health. Most functionally consequential variants in protein-coding genes are rare and, thus, difficult to find. As a first step toward understanding how rare variants contribute to risk for complex diseases, we sequenced 15,585 human protein-coding genes to an average median depth of 111× in 2440 individuals of European (n = 1351) and African (n = 1088) ancestry. We identified over 500,000 single-nucleotide variants (SNVs), the majority of which were rare (86% with a minor allele frequency less than 0.5%), previously unknown (82%), and population-specific (82%). On average, 2.3% of the 13,595 SNVs each person carried were predicted to affect protein function of ~313 genes per genome, and ~95.7% of SNVs predicted to be functionally important were rare. This excess of rare functional variants is due to the combined effects of explosive, recent accelerated population growth and weak purifying selection. Furthermore, we show that large sample sizes will be required to associate rare variants with complex traits.
Nature | 2008
John Novembre; Toby Johnson; Katarzyna Bryc; Zoltán Kutalik; Adam R. Boyko; Adam Auton; Amit Indap; Karen S. King; Sven Bergmann; Matthew R. Nelson; Matthew Stephens; Carlos Bustamante
Understanding the genetic structure of human populations is of fundamental interest to medical, forensic and anthropological sciences. Advances in high-throughput genotyping technology have markedly improved our understanding of global patterns of human genetic variation and suggest the potential to use large samples to uncover variation among closely spaced populations. Here we characterize genetic variation in a sample of 3,000 European individuals genotyped at over half a million variable DNA sites in the human genome. Despite low average levels of genetic differentiation among Europeans, we find a close correspondence between genetic and geographic distances; indeed, a geographical map of Europe arises naturally as an efficient two-dimensional summary of genetic variation in Europeans. The results emphasize that when mapping the genetic basis of a disease phenotype, spurious associations can arise if genetic structure is not properly accounted for. In addition, the results are relevant to the prospects of genetic ancestry testing; an individual’s DNA can be used to infer their geographic origin with surprising accuracy—often to within a few hundred kilometres.
Nature | 2003
Carlos Bustamante; Zev Bryant; Steven B. Smith
The basic features of DNA were elucidated during the half-century following the discovery of the double helix. But it is only during the past decade that researchers have been able to manipulate single molecules of DNA to make direct measurements of its mechanical properties. These studies have illuminated the nature of interactions between DNA and proteins, the constraints within which the cellular machinery operates, and the forces created by DNA-dependent motors.
Nature | 2001
Douglas E. Smith; Sander J. Tans; Steven B. Smith; Shelley Grimes; Dwight L. Anderson; Carlos Bustamante
As part of the viral infection cycle, viruses must package their newly replicated genomes for delivery to other host cells. Bacteriophage φ29 packages its 6.6-µm long, double-stranded DNA into a 42 × 54 nm capsid by means of a portal complex that hydrolyses ATP. This process is remarkable because entropic, electrostatic and bending energies of the DNA must be overcome to package the DNA to near-crystalline density. Here we use optical tweezers to pull on single DNA molecules as they are packaged, thus demonstrating that the portal complex is a force-generating motor. This motor can work against loads of up to 57 pN on average, making it one of the strongest molecular motors reported to date. Movements of over 5 µm are observed, indicating high processivity. Pauses and slips also occur, particularly at higher forces. We establish the force–velocity relationship of the motor and find that the rate-limiting step of the motors cycle is force dependent even at low loads. Notably, the packaging rate decreases as the prohead is filled, indicating that an internal force builds up to ∼50 pN owing to DNA confinement. Our data suggest that this force may be available for initiating the ejection of the DNA from the capsid during infection.
PLOS Biology | 2005
Rasmus Nielsen; Carlos Bustamante; Andrew G. Clark; Stephen Glanowski; Timothy B. Sackton; Melissa J. Hubisz; Adi Fledel-Alon; David M. Tanenbaum; Daniel Civello; Thomas J. White; John J. Sninsky; Mark D. Adams; Michele Cargill
Since the divergence of humans and chimpanzees about 5 million years ago, these species have undergone a remarkable evolution with drastic divergence in anatomy and cognitive abilities. At the molecular level, despite the small overall magnitude of DNA sequence divergence, we might expect such evolutionary changes to leave a noticeable signature throughout the genome. We here compare 13,731 annotated genes from humans to their chimpanzee orthologs to identify genes that show evidence of positive selection. Many of the genes that present a signature of positive selection tend to be involved in sensory perception or immune defenses. However, the group of genes that show the strongest evidence for positive selection also includes a surprising number of genes involved in tumor suppression and apoptosis, and of genes involved in spermatogenesis. We hypothesize that positive selection in some of these genes may be driven by genomic conflict due to apoptosis during spermatogenesis. Genes with maximal expression in the brain show little or no evidence for positive selection, while genes with maximal expression in the testis tend to be enriched with positively selected genes. Genes on the X chromosome also tend to show an elevated tendency for positive selection. We also present polymorphism data from 20 Caucasian Americans and 19 African Americans for the 50 annotated genes showing the strongest evidence for positive selection. The polymorphism analysis further supports the presence of positive selection in these genes by showing an excess of high-frequency derived nonsynonymous mutations.
PLOS Genetics | 2009
Ryan N. Gutenkunst; Ryan D. Hernandez; Scott Williamson; Carlos Bustamante
Demographic models built from genetic data play important roles in illuminating prehistorical events and serving as null models in genome scans for selection. We introduce an inference method based on the joint frequency spectrum of genetic variants within and between populations. For candidate models we numerically compute the expected spectrum using a diffusion approximation to the one-locus, two-allele Wright-Fisher process, involving up to three simultaneous populations. Our approach is a composite likelihood scheme, since linkage between neutral loci alters the variance but not the expectation of the frequency spectrum. We thus use bootstraps incorporating linkage to estimate uncertainties for parameters and significance values for hypothesis tests. Our method can also incorporate selection on single sites, predicting the joint distribution of selected alleles among populations experiencing a bevy of evolutionary forces, including expansions, contractions, migrations, and admixture. We model human expansion out of Africa and the settlement of the New World, using 5 Mb of noncoding DNA resequenced in 68 individuals from 4 populations (YRI, CHB, CEU, and MXL) by the Environmental Genome Project. We infer divergence between West African and Eurasian populations 140 thousand years ago (95% confidence interval: 40–270 kya). This is earlier than other genetic studies, in part because we incorporate migration. We estimate the European (CEU) and East Asian (CHB) divergence time to be 23 kya (95% c.i.: 17–43 kya), long after archeological evidence places modern humans in Europe. Finally, we estimate divergence between East Asians (CHB) and Mexican-Americans (MXL) of 22 kya (95% c.i.: 16.3–26.9 kya), and our analysis yields no evidence for subsequent migration. Furthermore, combining our demographic model with a previously estimated distribution of selective effects among newly arising amino acid mutations accurately predicts the frequency spectrum of nonsynonymous variants across three continental populations (YRI, CHB, CEU).
Nature | 2005
Carlos Bustamante; Adi Fledel-Alon; Scott Williamson; Rasmus Nielsen; Melissa Todd Hubisz; Stephen Glanowski; David M. Tanenbaum; Thomas J. White; John J. Sninsky; Ryan D. Hernandez; Daniel Civello; Mark D. Adams; Michele Cargill; Andrew G. Clark
Comparisons of DNA polymorphism within species to divergence between species enables the discovery of molecular adaptation in evolutionarily constrained genes as well as the differentiation of weak from strong purifying selection. The extent to which weak negative and positive darwinian selection have driven the molecular evolution of different species varies greatly, with some species, such as Drosophila melanogaster, showing strong evidence of pervasive positive selection, and others, such as the selfing weed Arabidopsis thaliana, showing an excess of deleterious variation within local populations. Here we contrast patterns of coding sequence polymorphism identified by direct sequencing of 39 humans for over 11,000 genes to divergence between humans and chimpanzees, and find strong evidence that natural selection has shaped the recent molecular evolution of our species. Our analysis discovered 304 (9.0%) out of 3,377 potentially informative loci showing evidence of rapid amino acid evolution. Furthermore, 813 (13.5%) out of 6,033 potentially informative loci show a paucity of amino acid differences between humans and chimpanzees, indicating weak negative selection and/or balancing selection operating on mutations at these loci. We find that the distribution of negatively and positively selected genes varies greatly among biological processes and molecular functions, and that some classes, such as transcription factors, show an excess of rapidly evolving genes, whereas others, such as cytoskeletal proteins, show an excess of genes with extensive amino acid polymorphism within humans and yet little amino acid divergence between humans and chimpanzees.
Annual Review of Biochemistry | 2008
Jeffrey R. Moffitt; Yann R. Chemla; Steven B. Smith; Carlos Bustamante
It has been over 20 years since the pioneering work of Arthur Ashkin, and in the intervening years, the field of optical tweezers has grown tremendously. Optical tweezers are now being used in the investigation of an increasing number of biochemical and biophysical processes, from the basic mechanical properties of biological polymers to the multitude of molecular machines that drive the internal dynamics of the cell. Innovation, however, continues in all areas of instrumentation and technique, with much of this work focusing on the refinement of established methods and on the integration of this tool with other forms of single-molecule manipulation or detection. Although technical in nature, these developments have important implications for the expanded use of optical tweezers in biochemical research and thus should be of general interest. In this review, we address these recent advances and speculate on possible future developments.
Nature Communications | 2011
Keyan Zhao; Chih-Wei Tung; Georgia C. Eizenga; Mark H. Wright; M. Liakat Ali; Adam H. Price; Gareth J. Norton; S. M. Rafiqul Islam; Andrew R. Reynolds; Jason G. Mezey; Anna M. McClung; Carlos Bustamante; Susan R. McCouch
Asian rice, Oryza sativa is a cultivated, inbreeding species that feeds over half of the worlds population. Understanding the genetic basis of diverse physiological, developmental, and morphological traits provides the basis for improving yield, quality and sustainability of rice. Here we show the results of a genome-wide association study based on genotyping 44,100 SNP variants across 413 diverse accessions of O. sativa collected from 82 countries that were systematically phenotyped for 34 traits. Using cross-population-based mapping strategies, we identified dozens of common variants influencing numerous complex traits. Significant heterogeneity was observed in the genetic architecture associated with subpopulation structure and response to environment. This work establishes an open-source translational research platform for genome-wide association studies in rice that directly links molecular variation in genes and metabolic pathways with the germplasm resources needed to accelerate varietal development and crop improvement.