Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carlos C. DaCamara is active.

Publication


Featured researches published by Carlos C. DaCamara.


International Journal of Climatology | 2000

Circulation weather types and their influence on the precipitation regime in Portugal

Ricardo M. Trigo; Carlos C. DaCamara

An objective classification scheme of the atmospheric circulation affecting Portugal, between 1946 and 1990, is presented, where daily circulation is characterized through the use of a set of indices associated with the direction and vorticity of the geostrophic flow. The synoptic characteristics and the frequency of ten basic circulation weather types (CWTs) are discussed, as well as the amount of precipitation associated with each type between 1957 and 1986. It is shown that the anticyclonic (A) type, although being the most frequent class in winter (37%), gives a rather small (less then 16%) contribution to the winter precipitation amount, observed on a daily basis. On the other hand, the three wettest CWTs, namely the cyclonic (C), southwesterly (SW) and westerly (W) types, together representing only 32% of all winter days, account for more than 62% of the observed daily precipitation. Results obtained highlight the existence of strong links between the interannual variability of monthly precipitation and interannual variability of CWTs. Multiple regression models, developed for 18 stations, show the ability of modelling monthly winter precipitation through the exclusive use, as predictors, of the wet CWTs (i.e. C, SW and W). The observed decreasing trend of March precipitation is also analysed and shown to be especially associated with the decrease of the three wet weather types. The anomalous low (high) frequency of wet CWTs during the hydrological year is shown to be strongly related with the occurrence of extreme dry (wet) years in Portugal, which had important impacts on Portuguese agriculture. Overall, the results suggest that the precipitation regime over Portugal, including interannual variability, trends and extremes, may be adequately explained in terms of variability of a fairly small number of circulation weather patterns. On the other hand, observed contrasts in the spatial distribution of correlations between frequency of wet CWTs and rainfall amounts suggest that precipitation regimes are of a different nature in northern and southern regions of Portugal; the former possessing an orographic origin and the latter being associated to cyclogenetic activity. Copyright


Journal of remote sensing | 2011

The Satellite Application Facility for Land Surface Analysis

Isabel F. Trigo; Carlos C. DaCamara; Pedro Viterbo; Jean-Louis Roujean; Folke Olesen; Carla Barroso; Fernando Camacho-de-Coca; Dominique Carrer; Sandra C. Freitas; Javier García-Haro; Bernhard Geiger; Françoise Gellens-Meulenberghs; Nicolas Ghilain; J. Meliá; Luis Pessanha; Niilo Siljamo; Alirio Arboleda

Information on land surface properties finds applications in a range of areas related to weather forecasting, environmental research, hazard management and climate monitoring. Remotely sensed observations yield the only means of supplying land surface information with adequate time sampling and a wide spatial coverage. The aim of the Satellite Application Facility for Land Surface Analysis (Land-SAF) is to take full advantage of remotely sensed data to support land, land–atmosphere and biosphere applications, with emphasis on the development and implementation of algorithms that allow operational use of data from European Organization for the Exploitation of Meteorological Satellites (EUMETSAT) sensors. This article provides an overview of the Land-SAF, with brief descriptions of algorithms and validation results. The set of parameters currently estimated and disseminated by the Land-SAF consists of three main groups: (i) the surface radiation budget, including albedo, land surface temperature, and downward short- and longwave fluxes; (ii) the surface water budget (snow cover and evapotranspiration); and (iii) vegetation and wild-fire parameters.


IEEE Transactions on Geoscience and Remote Sensing | 2005

Emissivity maps to retrieve land-surface temperature from MSG/SEVIRI

Leonardo F. Peres; Carlos C. DaCamara

Retrieval of land-surface temperature (LST) using data from the METEOSAT Second Generation-1 (MSG) Spinning Enhanced Visible and Infrared Imager (SEVIRI) requires adequate estimates of land-surface emissivity (LSE). In this context, LSE maps for SEVIRI channels IR3.9, IR8.7, IR10.8, and IR12.0 were developed based on the vegetation cover method. A broadband LSE map (3-14 /spl mu/m) was also developed for estimating longwave surface fluxes that may prove to be useful in both energy balance and climate modeling studies. LSE is estimated from conventional static land-cover classifications, LSE spectral data for each land cover, and fractional vegetation cover (FVC) information. Both International Geosphere-Biosphere Program (IGBP) Data and Information System (DIS) and Moderate Resolution Imaging Spectrometer (MODIS) MOD12Q1 land-cover products were used to build the LSE maps. Data on LSE were obtained from the Johns Hopkins University and Jet Propulsion Laboratory spectral libraries included in the Advanced Spaceborne Thermal Emission and Reflection Radiometer spectral library, as well as from the MODIS University of California-Santa Barbara spectral library. FVC data for each pixel were derived based on the normalized differential vegetation index. Depending on land cover, the LSE errors for channels IR3.9 and IR8.7 spatially vary from /spl plusmn/0.6% to /spl plusmn/24% and /spl plusmn/0.1% to /spl plusmn/33%, respectively, whereas the broadband spectrum errors lie between /spl plusmn/0.3% and /spl plusmn/7%. In the case of channels IR10.8 and IR12.0, 73% of the land surfaces within the MSG disk present relative errors less than /spl plusmn/1.5%, and almost all (26%) of the remaining areas have relative errors of /spl plusmn/2.0%. Developed LSE maps provide a first estimate of the ranges of LSE in SEVIRI channels for each surface type, and obtained results may be used to assess the sensitivity of algorithms where an a priori knowledge of LSE is required.


IEEE Transactions on Geoscience and Remote Sensing | 2008

Thermal Land Surface Emissivity Retrieved From SEVIRI/Meteosat

Isabel F. Trigo; Leonardo F. Peres; Carlos C. DaCamara; Sandra C. Freitas

The methodologies used by the Satellite Application Facility on Land Surface Analysis (Land SAF) for retrieving emissivity are presented here. In the first approach, i.e., the vegetation cover method (VCM), the land surface emissivity (EM) is computed for Spinning Enhanced Visible and Infrared Imager (SEVIRI) infrared channels and for the 3- to 14- range using information on the pixel fraction of vegetation cover (FVC). The VCM uses a lookup table, which takes into account the channels spectral response function, and laboratory reflectance spectra for different materials. The accuracy of the VCM depends on the reliability of FVC and the land cover classification. The EM for SEVIRI split-window channels is primarily used as an internal product by Land SAF for land surface temperature (LST) estimations. However, sensitivity studies show that LST often fails to meet the required accuracy of 2 K over desert and semiarid regions, where the VCM is unable to model the EM spatial variability, which is mostly associated with soil composition. Moreover, it is also over such areas where the atmosphere is generally dry that the impact of EM uncertainties on LST is largest. A second approach to determine the EM for SEVIRI split-window channels is currently being tested. This methodology allows the simultaneous retrieval of LST and channel EMs with the assumption that the latter remain constant. The channel EMs are then averaged over a 22-day period to filter out the noise in the retrievals. A first analysis of the maps obtained for an area within Northern Africa shows spatial patterns with features also present in the surface albedo.


Science of The Total Environment | 2015

Atmospheric conditions associated with extreme fire activity in the Western Mediterranean region

Malik Amraoui; Mário G. Pereira; Carlos C. DaCamara; Teresa J. Calado

Active fire information provided by TERRA and AQUA instruments on-board sun-synchronous polar MODIS platform is used to describe fire activity in the Western Mediterranean and to identify and characterize the synoptic patterns of several meteorological fields associated with the occurrence of extreme fire activity episodes (EEs). The spatial distribution of the fire pixels during the period of 2003-2012 leads to the identification of two most affected sub-regions, namely the Northern and Western parts of the Iberian Peninsula (NWIP) and Northern Africa (NAFR). The temporal distribution of the fire pixels in these two sub-regions is characterized by: (i) high and non-concurrent inter- and intra-annual variability with maximum values during the summer of 2003 and 2005 in NWIP and 2007 and 2012 in NAFR; and, (ii) high intra-annual variability dominated by a prominent annual cycle with a main peak centred in August in both sub-regions and a less pronounced secondary peak in March only evident in NWIP region. The 34 EEs identified were grouped according to the location, period of occurrence and spatial configuration of the associated synoptic patterns into 3 clusters (NWIP-summer, NWIP-winter and NAFR-summer). Results from the composite analysis reveal similar fire weather conditions (statistically significant positive anomalies of air temperature and negative anomalies of air relative humidity) but associated with different circulation patterns at lower and mid-levels of the atmosphere associated with the occurrence of EEs in each cluster of the Western Mediterranean region.


Chaos | 2008

Multistability, phase diagrams, and intransitivity in the Lorenz-84 low-order atmospheric circulation model

Joana G. Freire; Cristian Bonatto; Carlos C. DaCamara; Jason A. C. Gallas

We report phase diagrams detailing the intransitivity observed in the climate scenarios supported by a prototype atmospheric general circulation model, namely, the Lorenz-84 low-order model. So far, this model was known to have a pair of coexisting climates described originally by Lorenz. Bifurcation analysis allows the identification of a remarkably wide parameter region where up to four climates coexist simultaneously. In this region the dynamical behavior depends crucially on subtle and minute tuning of the model parameters. This strong parameter sensitivity makes the Lorenz-84 model a promising candidate of testing ground to validate techniques of assessing the sensitivity of low-order models to perturbations of parameters.


Journal of the Atmospheric Sciences | 2007

Wave Energy Associated with the Variability of the Stratospheric Polar Vortex

Margarida L. R. Liberato; J. M. Castanheira; L. de la Torre; Carlos C. DaCamara; Luis Gimeno

Abstract A study is performed on the energetics of planetary wave forcing associated with the variability of the northern winter polar vortex. The analysis relies on a three-dimensional normal mode expansion of the atmospheric general circulation that allows partitioning the total (i.e., kinetic + available potential) atmospheric energy into the energy associated with Rossby and inertio-gravity modes with barotropic and baroclinic vertical structures. The analysis mainly departs from traditional ones in respect to the wave forcing, which is here assessed in terms of total energy amounts associated with the waves instead of heat and momentum fluxes. Such an approach provides a sounder framework than traditional ones based on Eliassen–Palm (EP) flux diagnostics of wave propagation and related concepts of refractive indices and critical lines, which are strictly valid only in the cases of small-amplitude waves and in the context of the Wentzel–Kramers–Brillouin–Jeffries (WKBJ) approximation. Positive (negati...


Journal of the Atmospheric Sciences | 2009

Baroclinic Rossby Wave Forcing and Barotropic Rossby Wave Response to Stratospheric Vortex Variability

J. M. Castanheira; Margarida L. R. Liberato; L. de la Torre; Hans-F. Graf; Carlos C. DaCamara

Abstract An analysis is performed on the dynamical coupling between the variability of the extratropical stratospheric and tropospheric circulations during the Northern Hemisphere winter. Obtained results provide evidence that in addition to the well-known Charney and Drazin mechanism by which vertical propagation of baroclinic Rossby waves is nonlinearly influenced by the zonal mean zonal wind, topographic forcing constitutes another important mechanism by which nonlinearity is introduced in the troposphere–stratosphere wave-driven coupled variability. On the one hand, vortex variability is forced by baroclinic Rossby wave bursts, with positive (negative) peaks of baroclinic Rossby wave energy occurring during rapid vortex decelerations (accelerations). On the other hand, barotropic Rossby waves of zonal wavenumbers s = 1 and 3 respond to the vortex state, and strong evidence is presented that such a response is mediated by changes of the topographic forcing due to zonal mean zonal wind anomalies progres...


Journal of remote sensing | 2008

Validation of a temperature emissivity separation hybrid method from airborne hyperspectral scanner data and ground measurements in the SEN2FLEX field campaign

Leonardo F. Peres; José A. Sobrino; Renata Libonati; Juan C. Jiménez-Muñoz; Carlos C. DaCamara; M. Romaguera

This paper presents an assessment of the performance of a hybrid method that allows a simultaneous retrieval of land‐surface temperature (LST) and emissivity (LSE) from remotely‐sensed data. The proposed method is based on a synergistic usage of the split‐window (SW) algorithm and the two‐temperature method (TTM) and combines the advantages of both procedures while mitigating their drawbacks. The method was implemented for thermal channels 76 (10.56 µm) and 78 (11.72 µm) of the Airborne Hyperspectral Scanner (AHS), which was flown over the Barrax test site (Albacete, Spain) in the second week of July 2005, within the framework of the Sentinel‐2 and Fluorescence Experiment (SEN2FLEX) field campaign. A set of radiometric measurements was performed in the thermal infrared region in coincidence with aircraft overpasses for different surface types, e.g. bare soil, water body, corn, wheat, grass. The hybrid method was tested and compared with a standard SW algorithm and the results obtained show that the hybrid method is able to provide better estimates of LST, with values of bias (RMSE) of the order of 0.8 K (1.9 K), i.e. about one third (one half) of the corresponding values of 2.7 K (3.4 K) that were obtained for bias (RMSE) when using the SW algorithm. These figures provide a sound indication that the developed hybrid method is particularly useful for surface and atmospheric conditions where SW algorithms cannot be accurately applied.


Frontiers in Environmental Science | 2015

The influence of circulation weather patterns at different spatial scales on drought variability in the Iberian Peninsula

Ana Russo; Célia M. Gouveia; Ricardo M. Trigo; Margarida L. R. Liberato; Carlos C. DaCamara

Europe has suffered several extreme weather events which were responsible for considerable ecological and economic losses in the last few decades. In Southern Europe, droughts are one of the most frequent extreme weather events, causing severe damages and various fatalities. The main goal of this study is to determine the role of Circulation Weather Types (CWT) on spatial and temporal variability of droughts by means the new multi-scalar Standardized Precipitation Evapotranspiration Index (SPEI). This study aims also to identify the main CWTs associated with winter and summer droughts over different regions of Iberian Peninsula. During the period between 1950 and 2012, the most frequent CWTs were found to be the Anticyclonic (A), Cyclonic (C), North (N) and Northeast (NE) types. The trend analysis for winter season shows a clear increase of frequency CWTs associated to dry events (A, East and Southeast) and a decrease of frequency of C and northern types while in summer a clear decrease of NE is observed. The spatial patterns of correlation between SPEI and CWT show large patterns of negative correlations with winter frequencies of A and eastern weather types, while the reverse occurs with C and western types. This feature is highlighted on a regional approach. The NE type presents negative correlations Central, Northwestern and Southwestern regions during winter and positive correlations in Eastern region during summer. In opposition, the West type presents positive correlations in all regions (except Eastern region) during winter and does not present significant correlations during summer. In general, the predominant CWT associated to winter or summer drought conditions differs greatly between regions. The winter droughts are associated mainly with high frequency of E types and low frequency of W types for all areas, while the summer drought in eastern sectors are linked with low frequency of C type, as well as the western regions are related with the N type.

Collaboration


Dive into the Carlos C. DaCamara's collaboration.

Top Co-Authors

Avatar

Isabel F. Trigo

Instituto Português do Mar e da Atmosfera

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Leonardo F. Peres

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

José M. C. Pereira

Instituto Superior de Agronomia

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge