Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carlos Chacón-Díaz is active.

Publication


Featured researches published by Carlos Chacón-Díaz.


PLOS ONE | 2007

Brucella abortus Uses a Stealthy Strategy to Avoid Activation of the Innate Immune System during the Onset of Infection

Elías Barquero-Calvo; Esteban Chaves-Olarte; David S. Weiss; Caterina Guzmán-Verri; Carlos Chacón-Díaz; Alexandra Rucavado; Ignacio Moriyón; Edgardo Moreno

Background To unravel the strategy by which Brucella abortus establishes chronic infections, we explored its early interaction with innate immunity. Methodology/Principal Findings Brucella did not induce proinflammatory responses as demonstrated by the absence of leukocyte recruitment, humoral or cellular blood changes in mice. Brucella hampered neutrophil (PMN) function and PMN depletion did not influence the course of infection. Brucella barely induced proinflammatory cytokines and consumed complement, and was strongly resistant to bactericidal peptides, PMN extracts and serum. Brucella LPS (BrLPS), NH-polysaccharides, cyclic glucans, outer membrane fragments or disrupted bacterial cells displayed low biological activity in mice and cells. The lack of proinflammatory responses was not due to conspicuous inhibitory mechanisms mediated by the invading Brucella or its products. When activated 24 h post-infection macrophages did not kill Brucella, indicating that the replication niche was not fusiogenic with lysosomes. Brucella intracellular replication did not interrupt the cell cycle or caused cytotoxicity in WT, TLR4 and TLR2 knockout cells. TNF-α-induction was TLR4- and TLR2-dependent for live but not for killed B. abortus. However, intracellular replication in TLR4, TLR2 and TLR4/2 knockout cells was not altered and the infection course and anti-Brucella immunity development upon BrLPS injection was unaffected in TLR4 mutant mice. Conclusion/Significance We propose that Brucella has developed a stealth strategy through PAMPs reduction, modification and hiding, ensuring by this manner low stimulatory activity and toxicity for cells. This strategy allows Brucella to reach its replication niche before activation of antimicrobial mechanisms by adaptive immunity. This model is consistent with clinical profiles observed in humans and natural hosts at the onset of infection and could be valid for those intracellular pathogens phylogenetically related to Brucella that also cause long lasting infections.


PLOS Pathogens | 2012

The lipopolysaccharide core of Brucella abortus acts as a shield against innate immunity recognition

Raquel Conde-Álvarez; Vilma Arce-Gorvel; Maite Iriarte; Mateja Manček-Keber; Elías Barquero-Calvo; Leyre Palacios-Chaves; Carlos Chacón-Díaz; Esteban Chaves-Olarte; Anna Martirosyan; Kristine von Bargen; María-Jesús Grilló; Roman Jerala; Klaus Brandenburg; Enrique Llobet; José Antonio Bengoechea; Edgardo Moreno; Ignacio Moriyón; Jean-Pierre Gorvel

Innate immunity recognizes bacterial molecules bearing pathogen-associated molecular patterns to launch inflammatory responses leading to the activation of adaptive immunity. However, the lipopolysaccharide (LPS) of the gram-negative bacterium Brucella lacks a marked pathogen-associated molecular pattern, and it has been postulated that this delays the development of immunity, creating a gap that is critical for the bacterium to reach the intracellular replicative niche. We found that a B. abortus mutant in the wadC gene displayed a disrupted LPS core while keeping both the LPS O-polysaccharide and lipid A. In mice, the wadC mutant induced proinflammatory responses and was attenuated. In addition, it was sensitive to killing by non-immune serum and bactericidal peptides and did not multiply in dendritic cells being targeted to lysosomal compartments. In contrast to wild type B. abortus, the wadC mutant induced dendritic cell maturation and secretion of pro-inflammatory cytokines. All these properties were reproduced by the wadC mutant purified LPS in a TLR4-dependent manner. Moreover, the core-mutated LPS displayed an increased binding to MD-2, the TLR4 co-receptor leading to subsequent increase in intracellular signaling. Here we show that Brucella escapes recognition in early stages of infection by expressing a shield against recognition by innate immunity in its LPS core and identify a novel virulence mechanism in intracellular pathogenic gram-negative bacteria. These results also encourage for an improvement in the generation of novel bacterial vaccines.


PLOS ONE | 2009

The Differential Interaction of Brucella and Ochrobactrum with Innate Immunity Reveals Traits Related to the Evolution of Stealthy Pathogens

Elías Barquero-Calvo; Raquel Conde-Álvarez; Carlos Chacón-Díaz; Lucía Quesada-Lobo; Anna Martirosyan; Caterina Guzmán-Verri; Maite Iriarte; Mateja Manček-Keber; Roman Jerala; Jean Pierre Gorvel; Ignacio Moriyón; Edgardo Moreno; Esteban Chaves-Olarte

Background During evolution, innate immunity has been tuned to recognize pathogen-associated molecular patterns. However, some α-Proteobacteria are stealthy intracellular pathogens not readily detected by this system. Brucella members follow this strategy and are highly virulent, but other Brucellaceae like Ochrobactrum are rhizosphere inhabitants and only opportunistic pathogens. To gain insight into the emergence of the stealthy strategy, we compared these two phylogenetically close but biologically divergent bacteria. Methodology/Principal Findings In contrast to Brucella abortus, Ochrobactrum anthropi did not replicate within professional and non-professional phagocytes and, whereas neutrophils had a limited action on B. abortus, they were essential to control O. anthropi infections. O. anthropi triggered proinflammatory responses markedly lower than Salmonella enterica but higher than B. abortus. In macrophages and dendritic cells, the corresponding lipopolysaccharides reproduced these grades of activation, and binding of O. anthropi lipopolysaccharide to the TLR4 co-receptor MD-2 and NF-κB induction laid between those of B. abortus and enteric bacteria lipopolysaccharides. These differences correlate with reported variations in lipopolysaccharide core sugars, sensitivity to bactericidal peptides and outer membrane permeability. Conclusions/Significance The results suggest that Brucellaceae ancestors carried molecules not readily recognized by innate immunity, so that non-drastic variations led to the emergence of stealthy intracellular parasites. They also suggest that some critical envelope properties, like selective permeability, are profoundly altered upon modification of pathogen-associated molecular patterns, and that this represents a further adaptation to the host. It is proposed that this adaptive trend is relevant in other intracellular α-Proteobacteria like Bartonella, Rickettsia, Anaplasma, Ehrlichia and Wolbachia.


PLOS ONE | 2011

Brucella abortus Ornithine Lipids Are Dispensable Outer Membrane Components Devoid of a Marked Pathogen-Associated Molecular Pattern

Leyre Palacios-Chaves; Raquel Conde-Álvarez; Yolanda Gil-Ramírez; Amaia Zúñiga-Ripa; Elías Barquero-Calvo; Carlos Chacón-Díaz; Esteban Chaves-Olarte; Vilma Arce-Gorvel; Jean-Pierre Gorvel; Edgardo Moreno; María-Jesús de Miguel; María-Jesús Grilló; Ignacio Moriyón; Maite Iriarte

The brucellae are α-Proteobacteria facultative intracellular parasites that cause an important zoonosis. These bacteria escape early detection by innate immunity, an ability associated to the absence of marked pathogen-associated molecular patterns in the cell envelope lipopolysaccharide, lipoproteins and flagellin. We show here that, in contrast to the outer membrane ornithine lipids (OL) of other Gram negative bacteria, Brucella abortus OL lack a marked pathogen-associated molecular pattern activity. We identified two OL genes (olsB and olsA) and by generating the corresponding mutants found that olsB deficient B. abortus did not synthesize OL or their lyso-OL precursors. Liposomes constructed with B. abortus OL did not trigger IL-6 or TNF-α release by macrophages whereas those constructed with Bordetella pertussis OL and the olsB mutant lipids as carriers were highly active. The OL deficiency in the olsB mutant did not promote proinflammatory responses or generated attenuation in mice. In addition, OL deficiency did not increase sensitivity to polymyxins, normal serum or complement consumption, or alter the permeability to antibiotics and dyes. Taken together, these observations indicate that OL have become dispensable in the extant brucellae and are consistent within the trend observed in α-Proteobacteria animal pathogens to reduce and eventually eliminate the envelope components susceptible of recognition by innate immunity.


PLOS Pathogens | 2015

Brucella abortus Induces the Premature Death of Human Neutrophils through the Action of Its Lipopolysaccharide

Elías Barquero-Calvo; Ricardo Mora-Cartín; Vilma Arce-Gorvel; Juana de Diego; Carlos Chacón-Díaz; Esteban Chaves-Olarte; Caterina Guzmán-Verri; Andre G. Buret; Jean-Pierre Gorvel; Edgardo Moreno

Most bacterial infections induce the activation of polymorphonuclear neutrophils (PMNs), enhance their microbicidal function, and promote the survival of these leukocytes for protracted periods of time. Brucella abortus is a stealthy pathogen that evades innate immunity, barely activates PMNs, and resists the killing mechanisms of these phagocytes. Intriguing clinical signs observed during brucellosis are the low numbers of Brucella infected PMNs in the target organs and neutropenia in a proportion of the patients; features that deserve further attention. Here we demonstrate that B. abortus prematurely kills human PMNs in a dose-dependent and cell-specific manner. Death of PMNs is concomitant with the intracellular Brucella lipopolysaccharide (Br-LPS) release within vacuoles. This molecule and its lipid A reproduce the premature cell death of PMNs, a phenomenon associated to the low production of proinflammatory cytokines. Blocking of CD14 but not TLR4 prevents the Br-LPS-induced cell death. The PMNs cell death departs from necrosis, NETosis and classical apoptosis. The mechanism of PMN cell death is linked to the activation of NADPH-oxidase and a modest but steadily increase of ROS mediators. These effectors generate DNA damage, recruitments of check point kinase 1, caspases 5 and to minor extent of caspase 4, RIP1 and Ca++ release. The production of IL-1β by PMNs was barely stimulated by B. abortus infection or Br-LPS treatment. Likewise, inhibition of caspase 1 did not hamper the Br-LPS induced PMN cell death, suggesting that the inflammasome pathway was not involved. Although activation of caspases 8 and 9 was observed, they did not seem to participate in the initial triggering mechanisms, since inhibition of these caspases scarcely blocked PMN cell death. These findings suggest a mechanism for neutropenia in chronic brucellosis and reveal a novel Brucella-host cross-talk through which B. abortus is able to hinder the innate function of PMN.


Journal of Microbiology | 2008

Isolation and molecular characterization of Xylella fastidiosa from coffee plants in Costa Rica

Mauricio Montero-Astúa; Carlos Chacón-Díaz; Estela Aguilar; C. M. Rodríguez; Laura Garita; W. Villalobos; Lisela Moreira; John S. Hartung; Carmen Rivera

Coffee plants exhibiting a range of symptoms including mild to severe curling of leaf margins, chlorosis and deformation of leaves, stunting of plants, shortening of internodes, and dieback of branches have been reported since 1995 in several regions of Costa Rica’s Central Valley. The symptoms are referred to by coffee producers in Costa Rica as “crespera” disease and have been associated with the presence of the bacterium Xylella fastidiosa. Coffee plants determined to be infected by the bacterium by enzyme linked immunosorbent assay (ELISA), were used for both transmission electron microscopy (TEM) and for isolation of the bacterium in PW broth or agar. Petioles examined by TEM contained rod-shaped bacteria inside the xylem vessels. The bacteria measured 0.3 to 0.5 μm in width and 1.5 to 3.0 μm in length, and had rippled cell walls 10 to 40 nm in thickness, typical of X. fastidiosa. Small, circular, dome-shaped colonies were observed 7 to 26 days after plating of plant extracts on PW agar. The colonies were comprised of Gram-negative rods of variable length and a characteristic slight longitudinal bending. TEM of the isolated bacteria showed characteristic rippled cell walls, similar to those observed in plant tissue. ELISA and PCR with specific primer pairs 272-l-int/272-2-int and RST31/RST33 confirmed the identity of the isolated bacteria as X. fastidiosa. RFLP analysis of the amplification products revealed diversity within X. fastidiosa strains from Costa Rica and suggest closer genetic proximity to strains from the United States of America than to other coffee or citrus strains from Brazil.


BMC Veterinary Research | 2014

Brucella ceti infection in dolphins from the Western Mediterranean sea

Marcos Isidoro-Ayza; Nazareth Ruiz-Villalobos; L. Pérez; Caterina Guzmán-Verri; Pilar Muñoz; Fernando Alegre; M. Barberán; Carlos Chacón-Díaz; Esteban Chaves-Olarte; Rocío González-Barrientos; Edgardo Moreno; José M. Blasco; Mariano Domingo

BackgroundBrucella ceti infections have been increasingly reported in cetaceans. Brucellosis in these animals is associated with meningoencephalitis, abortion, discospondylitis’, subcutaneous abscesses, endometritis and other pathological conditions B. ceti infections have been frequently described in dolphins from both, the Atlantic and Pacific Oceans. In the Mediterranean Sea, only two reports have been made: one from the Italian Tyrrhenian Sea and the other from the Adriatic Sea.ResultsWe describe the clinical and pathological features of three cases of B. ceti infections in three dolphins stranded in the Mediterranean Catalonian coast. One striped dolphin had neurobrucellosis, showing lethargy, incoordination and lateral swimming due to meningoencephalitis, A B. ceti infected bottlenose dolphin had discospondylitis, and another striped dolphin did not show clinical signs or lesions related to Brucella infection. A detailed characterization of the three B. ceti isolates was performed by bacteriological, molecular, protein and fatty acid analyses.ConclusionsAll the B. ceti strains originating from Mediterranean dolphins cluster together in a distinct phylogenetic clade, close to that formed by B. ceti isolates from dolphins inhabiting the Atlantic Ocean. Our study confirms the severity of pathological signs in stranded dolphins and the relevance of B. ceti as a pathogen in the Mediterranean Sea.


Emerging Infectious Diseases | 2017

Brucella neotomae Infection in Humans, Costa Rica.

Marcela Suárez-Esquivel; Nazareth Ruiz-Villalobos; César Jiménez-Rojas; Elías Barquero-Calvo; Carlos Chacón-Díaz; Eunice Víquez-Ruiz; Norman Rojas-Campos; Kate S. Baker; Gerardo Oviedo-Sánchez; Ernesto Amuy; Esteban Chaves-Olarte; Nicholas R. Thomson; Edgardo Moreno; Caterina Guzmán-Verri

Several species of Brucella are known to be zoonotic, but B. neotomae infection has been thought to be limited to wood rats. In 2008 and 2011, however, B. neotomae was isolated from cerebrospinal fluid of 2 men with neurobrucellosis. The nonzoonotic status of B. neotomae should be reassessed.


Infection and Immunity | 2015

Brucella canis Is an Intracellular Pathogen That Induces a Lower Proinflammatory Response than Smooth Zoonotic Counterparts

Carlos Chacón-Díaz; Pamela Altamirano-Silva; Gabriela González-Espinoza; María-Concepción Medina; Alejandro Alfaro-Alarcón; Laura Bouza-Mora; César Jiménez-Rojas; Melissa Wong; Elías Barquero-Calvo; Norman Rojas; Caterina Guzmán-Verri; Edgardo Moreno; Esteban Chaves-Olarte

ABSTRACT Canine brucellosis caused by Brucella canis is a disease of dogs and a zoonotic risk. B. canis harbors most of the virulence determinants defined for the genus, but its pathogenic strategy remains unclear since it has not been demonstrated that this natural rough bacterium is an intracellular pathogen. Studies of B. canis outbreaks in kennel facilities indicated that infected dogs displaying clinical signs did not present hematological alterations. A virulent B. canis strain isolated from those outbreaks readily replicated in different organs of mice for a protracted period. However, the levels of tumor necrosis factor alpha, interleukin-6 (IL-6), and IL-12 in serum were close to background levels. Furthermore, B. canis induced lower levels of gamma interferon, less inflammation of the spleen, and a reduced number of granulomas in the liver in mice than did B. abortus. When the interaction of B. canis with cells was studied ex vivo, two patterns were observed, a predominant scattered cell-associated pattern of nonviable bacteria and an infrequent intracellular replicative pattern of viable bacteria in a perinuclear location. The second pattern, responsible for the increase in intracellular multiplication, was dependent on the type IV secretion system VirB and was seen only if the inoculum used for cell infections was in early exponential phase. Intracellular replicative B. canis followed an intracellular trafficking route undistinguishable from that of B. abortus. Although B. canis induces a lower proinflammatory response and has a stealthier replication cycle, it still displays the pathogenic properties of the genus and the ability to persist in infected organs based on the ability to multiply intracellularly.


Frontiers in Microbiology | 2016

Brucella abortus Strain 2308 Wisconsin Genome: Importance of the Definition of Reference Strains

Marcela Suárez-Esquivel; Nazareth Ruiz-Villalobos; Amanda Castillo-Zeledón; César Jiménez-Rojas; R. Martin Roop; Diego J. Comerci; Elías Barquero-Calvo; Carlos Chacón-Díaz; Clayton C. Caswell; Kate S. Baker; Esteban Chaves-Olarte; Nicholas R. Thomson; Edgardo Moreno; Jean J. Letesson; Xavier De Bolle; Caterina Guzmán-Verri

Brucellosis is a bacterial infectious disease affecting a wide range of mammals and a neglected zoonosis caused by species of the genetically homogenous genus Brucella. As in most studies on bacterial diseases, research in brucellosis is carried out by using reference strains as canonical models to understand the mechanisms underlying host pathogen interactions. We performed whole genome sequencing analysis of the reference strain B. abortus 2308 routinely used in our laboratory, including manual curated annotation accessible as an editable version through a link at https://en.wikipedia.org/wiki/Brucella#Genomics. Comparison of this genome with two publically available 2308 genomes showed significant differences, particularly indels related to insertional elements, suggesting variability related to the transposition of these elements within the same strain. Considering the outcome of high resolution genomic techniques in the bacteriology field, the conventional concept of strain definition needs to be revised.

Collaboration


Dive into the Carlos Chacón-Díaz's collaboration.

Top Co-Authors

Avatar

Edgardo Moreno

University of Costa Rica

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Norman Rojas

University of Costa Rica

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

María-Jesús Grilló

Spanish National Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge