Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carlos Cruchaga is active.

Publication


Featured researches published by Carlos Cruchaga.


Nature Genetics | 2009

Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer's disease.

Denise Harold; Richard Abraham; Paul Hollingworth; Rebecca Sims; Amy Gerrish; Marian Lindsay Hamshere; Jaspreet Singh Pahwa; Valentina Moskvina; Kimberley Dowzell; Amy Williams; Nicola L. Jones; Charlene Thomas; Alexandra Stretton; Angharad R. Morgan; Simon Lovestone; John Powell; Petroula Proitsi; Michelle K. Lupton; Carol Brayne; David C. Rubinsztein; Michael Gill; Brian A. Lawlor; Aoibhinn Lynch; Kevin Morgan; Kristelle Brown; Peter Passmore; David Craig; Bernadette McGuinness; Stephen Todd; Clive Holmes

We undertook a two-stage genome-wide association study (GWAS) of Alzheimers disease (AD) involving over 16,000 individuals, the most powerful AD GWAS to date. In stage 1 (3,941 cases and 7,848 controls), we replicated the established association with the apolipoprotein E (APOE) locus (most significant SNP, rs2075650, P = 1.8 × 10−157) and observed genome-wide significant association with SNPs at two loci not previously associated with the disease: at the CLU (also known as APOJ) gene (rs11136000, P = 1.4 × 10−9) and 5′ to the PICALM gene (rs3851179, P = 1.9 × 10−8). These associations were replicated in stage 2 (2,023 cases and 2,340 controls), producing compelling evidence for association with Alzheimers disease in the combined dataset (rs11136000, P = 8.5 × 10−10, odds ratio = 0.86; rs3851179, P = 1.3 × 10−9, odds ratio = 0.86).


Archive | 2009

Letter abstract - Genome-wide association study identifies variants at CLU and PICALM associated with Alzheimer's Disease

Denise Harold; Richard Abraham; Paul Hollingworth; Rebecca Sims; Amy Gerrish; Marian Lindsay Hamshere; Jaspreet Sing Pahwa; Valentina Moskvina; Kimberley Dowzell; Amy Williams; Nicola L. Jones; Charlene Thomas; Alexandra Stretton; Angharad R. Morgan; Simon Lovestone; John Powell; Petroula Proitsi; Michelle K. Lupton; Carol Brayne; David C. Rubinsztein; Michael Gill; Brian A. Lawlor; Aoibhinn Lynch; Kevin Morgan; Kristelle Brown; Peter Passmore; David Craig; Bernadette McGuinness; Stephen Todd; Clive Holmes

We undertook a two-stage genome-wide association study (GWAS) of Alzheimers disease (AD) involving over 16,000 individuals, the most powerful AD GWAS to date. In stage 1 (3,941 cases and 7,848 controls), we replicated the established association with the apolipoprotein E (APOE) locus (most significant SNP, rs2075650, P = 1.8 × 10−157) and observed genome-wide significant association with SNPs at two loci not previously associated with the disease: at the CLU (also known as APOJ) gene (rs11136000, P = 1.4 × 10−9) and 5′ to the PICALM gene (rs3851179, P = 1.9 × 10−8). These associations were replicated in stage 2 (2,023 cases and 2,340 controls), producing compelling evidence for association with Alzheimers disease in the combined dataset (rs11136000, P = 8.5 × 10−10, odds ratio = 0.86; rs3851179, P = 1.3 × 10−9, odds ratio = 0.86).


The New England Journal of Medicine | 2013

TREM2 Variants in Alzheimer's Disease

Rita Guerreiro; Aleksandra Wojtas; Jose Bras; Minerva M. Carrasquillo; Ekaterina Rogaeva; Elisa Majounie; Carlos Cruchaga; Celeste Sassi; John Kauwe; Steven G. Younkin; Lili-Naz Hazrati; John Collinge; Jennifer M. Pocock; Tammaryn Lashley; Julie Williams; Jean Charles Lambert; Philippe Amouyel; Alison Goate; Rosa Rademakers; Kevin Morgan; John Powell; Peter St George-Hyslop; Andrew Singleton; John Hardy

BACKGROUND Homozygous loss-of-function mutations in TREM2, encoding the triggering receptor expressed on myeloid cells 2 protein, have previously been associated with an autosomal recessive form of early-onset dementia. METHODS We used genome, exome, and Sanger sequencing to analyze the genetic variability in TREM2 in a series of 1092 patients with Alzheimers disease and 1107 controls (the discovery set). We then performed a meta-analysis on imputed data for the TREM2 variant rs75932628 (predicted to cause a R47H substitution) from three genomewide association studies of Alzheimers disease and tested for the association of the variant with disease. We genotyped the R47H variant in an additional 1887 cases and 4061 controls. We then assayed the expression of TREM2 across different regions of the human brain and identified genes that are differentially expressed in a mouse model of Alzheimers disease and in control mice. RESULTS We found significantly more variants in exon 2 of TREM2 in patients with Alzheimers disease than in controls in the discovery set (P=0.02). There were 22 variant alleles in 1092 patients with Alzheimers disease and 5 variant alleles in 1107 controls (P<0.001). The most commonly associated variant, rs75932628 (encoding R47H), showed highly significant association with Alzheimers disease (P<0.001). Meta-analysis of rs75932628 genotypes imputed from genomewide association studies confirmed this association (P=0.002), as did direct genotyping of an additional series of 1887 patients with Alzheimers disease and 4061 controls (P<0.001). Trem2 expression differed between control mice and a mouse model of Alzheimers disease. CONCLUSIONS Heterozygous rare variants in TREM2 are associated with a significant increase in the risk of Alzheimers disease. (Funded by Alzheimers Research UK and others.).


Science Translational Medicine | 2011

Human apoE isoforms differentially regulate brain amyloid-β peptide clearance

Joseph M. Castellano; Jungsu Kim; Floy R. Stewart; Hong Jiang; Ronald B. DeMattos; Bruce W. Patterson; Anne M. Fagan; John C. Morris; Carlos Cruchaga; Alison Goate; Kelly R. Bales; Steven M. Paul; Randall J. Bateman; David M. Holtzman

Human apoE4 increases the concentration of soluble Aβ in the brain by impairing its clearance. Clearing the Debris in Alzheimer’s Disease The strongest risk factor for developing the common sporadic form of Alzheimer’s disease (AD) that occurs in old age is the ε4 allele encoding apolipoprotein E4 (apoE4). Two ε4 alleles can lower the age of onset of AD by 10 to 15 years. In contrast, the ε2 allele decreases the risk of developing this neurodegenerative disorder. APOE is important for lipoprotein metabolism, but how it might be involved in AD has remained unclear. It has been suggested that the apoE4 isoform might somehow help to drive accumulation of the peptide amyloid-β (Aβ), which forms amyloid plaques in the brain that contribute to neuronal death and are the characteristic hallmark of AD. In a tour de force study in humans and mice, Holtzman and his team at Washington University in St. Louis now show that apoE4 contributes to Aβ accumulation in the brain not by affecting Aβ synthesis but by affecting its clearance. First, the authors looked at the Aβ concentration in the cerebrospinal fluid (CSF) of cognitively normal individuals under age 70 carrying different APOE genotypes. They found that those with the ε4/ε4 genotype had a much lower CSF Aβ concentration than did those with the protective ε2/ε3 genotype. A CSF Aβ concentration of less than 500 pg/ml is an indication that Aβ peptide is accumulating in the brain and thus is not moving into the CSF. Next, the researchers analyzed imaging data using a dye called Pittsburgh compound B that binds to amyloid plaques in the brain and showed that those individuals with the ε4/ε4 genotype bound more dye than did those with the other APOE genotypes. They then moved to a mouse model of AD in which the mice expressed one of the three human apoE isoforms. They measured Aβ concentrations in the interstitial fluid of these mice using in vivo microdialysis and then looked at stained hippocampal sections from these mice. They found greater Aβ concentrations in both interstitial fluid and the hippocampus in mice expressing the human apoE4 isoform than in animals expressing either the E3 or E2 isoforms. They discovered that this difference in Aβ concentration between the mice carrying different APOE genotypes was present in young as well as aged mice, suggesting that it predates the appearance of amyloid plaques. They then measured clearance of Aβ from the interstitial fluid of young mice and showed that those with the human apoE4 isoform were less able to clear Aβ than those with the apoE2 or apoE3 isoforms. The researchers showed that processing of the amyloid precursor protein and generation of the Aβ peptide did not vary according to genotype, lending credence to the hypothesis that apoE4 affects clearance of Aβ but not its synthesis. This thorough study sheds new light on how apoE4 is implicated in AD and highlights the Aβ clearance pathway as a new target for developing drugs to slow or even halt the accumulation of amyloid plaques in patients with AD. The apolipoprotein E (APOE) ε4 allele is the strongest genetic risk factor for late-onset, sporadic Alzheimer’s disease (AD). The APOE ε4 allele markedly increases AD risk and decreases age of onset, likely through its strong effect on the accumulation of amyloid-β (Aβ) peptide. In contrast, the APOE ε2 allele appears to decrease AD risk. Most rare, early-onset forms of familial AD are caused by autosomal dominant mutations that often lead to overproduction of Aβ42 peptide. However, the mechanism by which APOE alleles differentially modulate Aβ accumulation in sporadic, late-onset AD is less clear. In a cohort of cognitively normal individuals, we report that reliable molecular and neuroimaging biomarkers of cerebral Aβ deposition vary in an apoE isoform–dependent manner. We hypothesized that human apoE isoforms differentially affect Aβ clearance or synthesis in vivo, resulting in an apoE isoform–dependent pattern of Aβ accumulation later in life. Performing in vivo microdialysis in a mouse model of Aβ-amyloidosis expressing human apoE isoforms (PDAPP/TRE), we find that the concentration and clearance of soluble Aβ in the brain interstitial fluid depends on the isoform of apoE expressed. This pattern parallels the extent of Aβ deposition observed in aged PDAPP/TRE mice. ApoE isoform–dependent differences in soluble Aβ metabolism are observed not only in aged but also in young PDAPP/TRE mice well before the onset of Aβ deposition in amyloid plaques in the brain. Additionally, amyloidogenic processing of amyloid precursor protein and Aβ synthesis, as assessed by in vivo stable isotopic labeling kinetics, do not vary according to apoE isoform in young PDAPP/TRE mice. Our results suggest that APOE alleles contribute to AD risk by differentially regulating clearance of Aβ from the brain, suggesting that Aβ clearance pathways may be useful therapeutic targets for AD prevention.


PLOS ONE | 2010

Genetic evidence implicates the immune system and cholesterol metabolism in the aetiology of Alzheimer's disease.

Lesley Jones; Peter Holmans; Marian Lindsay Hamshere; Denise Harold; Valentina Moskvina; Dobril Ivanov; Andrew Pocklington; Richard Abraham; Paul Hollingworth; Rebecca Sims; Amy Gerrish; Jaspreet Singh Pahwa; Nicola L. Jones; Alexandra Stretton; Angharad R. Morgan; Simon Lovestone; John Powell; Petroula Proitsi; Michelle K. Lupton; Carol Brayne; David C. Rubinsztein; Michael Gill; Brian A. Lawlor; Aoibhinn Lynch; Kevin Morgan; Kristelle Brown; Peter Passmore; David Craig; Bernadette McGuinness; Stephen Todd

Background Late Onset Alzheimers disease (LOAD) is the leading cause of dementia. Recent large genome-wide association studies (GWAS) identified the first strongly supported LOAD susceptibility genes since the discovery of the involvement of APOE in the early 1990s. We have now exploited these GWAS datasets to uncover key LOAD pathophysiological processes. Methodology We applied a recently developed tool for mining GWAS data for biologically meaningful information to a LOAD GWAS dataset. The principal findings were then tested in an independent GWAS dataset. Principal Findings We found a significant overrepresentation of association signals in pathways related to cholesterol metabolism and the immune response in both of the two largest genome-wide association studies for LOAD. Significance Processes related to cholesterol metabolism and the innate immune response have previously been implicated by pathological and epidemiological studies of Alzheimers disease, but it has been unclear whether those findings reflected primary aetiological events or consequences of the disease process. Our independent evidence from two large studies now demonstrates that these processes are aetiologically relevant, and suggests that they may be suitable targets for novel and existing therapeutic approaches.


Nature | 2014

Rare coding variants in the phospholipase D3 gene confer risk for Alzheimer's disease

Carlos Cruchaga; Celeste M. Karch; Sheng Chih Jin; Bruno A. Benitez; Yefei Cai; Rita Guerreiro; Oscar Harari; Joanne Norton; John Budde; Sarah Bertelsen; Amanda T. Jeng; Breanna Cooper; Tara Skorupa; David Carrell; Denise Levitch; Simon Hsu; Jiyoon Choi; Mina Ryten; John Hardy; Daniah Trabzuni; Michael E. Weale; Adaikalavan Ramasamy; Colin Smith; Celeste Sassi; Jose Bras; J. Raphael Gibbs; Dena Hernandez; Michelle K. Lupton; John Powell; Paola Forabosco

Genome-wide association studies (GWAS) have identified several risk variants for late-onset Alzheimers disease (LOAD). These common variants have replicable but small effects on LOAD risk and generally do not have obvious functional effects. Low-frequency coding variants, not detected by GWAS, are predicted to include functional variants with larger effects on risk. To identify low-frequency coding variants with large effects on LOAD risk, we carried out whole-exome sequencing (WES) in 14 large LOAD families and follow-up analyses of the candidate variants in several large LOAD case–control data sets. A rare variant in PLD3 (phospholipase D3; Val232Met) segregated with disease status in two independent families and doubled risk for Alzheimer’s disease in seven independent case–control series with a total of more than 11,000 cases and controls of European descent. Gene-based burden analyses in 4,387 cases and controls of European descent and 302 African American cases and controls, with complete sequence data for PLD3, reveal that several variants in this gene increase risk for Alzheimer’s disease in both populations. PLD3 is highly expressed in brain regions that are vulnerable to Alzheimer’s disease pathology, including hippocampus and cortex, and is expressed at significantly lower levels in neurons from Alzheimer’s disease brains compared to control brains. Overexpression of PLD3 leads to a significant decrease in intracellular amyloid-β precursor protein (APP) and extracellular Aβ42 and Aβ40 (the 42- and 40-residue isoforms of the amyloid-β peptide), and knockdown of PLD3 leads to a significant increase in extracellular Aβ42 and Aβ40. Together, our genetic and functional data indicate that carriers of PLD3 coding variants have a twofold increased risk for LOAD and that PLD3 influences APP processing. This study provides an example of how densely affected families may help to identify rare variants with large effects on risk for disease or other complex traits.


Molecular Psychiatry | 2009

Genetic variation in the CHRNA5 gene affects mRNA levels and is associated with risk for alcohol dependence.

Jen-Chyong Wang; Richard A. Grucza; Carlos Cruchaga; Anthony L. Hinrichs; Sarah Bertelsen; John Budde; Louis Fox; E Goldstein; Oliver Reyes; Nancy L. Saccone; Scott F. Saccone; Xiaoling Xuei; K. K. Bucholz; Samuel Kuperman; John I. Nurnberger; John P. Rice; M. Schuckit; Jay A. Tischfield; Victor Hesselbrock; Bernice Porjesz; Howard J. Edenberg; Laura J. Bierut; Alison Goate

Alcohol dependence frequently co-occurs with cigarette smoking, another common addictive behavior. Evidence from genetic studies demonstrates that alcohol dependence and smoking cluster in families and have shared genetic vulnerability. Recently a candidate gene study in nicotine dependent cases and nondependent smoking controls reported strong associations between a missense mutation (rs16969968) in exon 5 of the CHRNA5 gene and a variant in the 3′-UTR of the CHRNA3 gene and nicotine dependence. In this study we performed a comprehensive association analysis of the CHRNA5–CHRNA3–CHRNB4 gene cluster in the Collaborative Study on the Genetics of Alcoholism (COGA) families to investigate the role of genetic variants in risk for alcohol dependence. Using the family-based association test, we observed that a different group of polymorphisms, spanning CHRNA5-CHRNA3, demonstrate association with alcohol dependence defined by Diagnostic and Statistical Manual of Mental Disorders, 4th edn (DSM-IV) criteria. Using logistic regression we replicated this finding in an independent case-control series from the family study of cocaine dependence. These variants show low linkage disequilibrium with the SNPs previously reported to be associated with nicotine dependence and therefore represent an independent observation. Functional studies in human brain reveal that the variants associated with alcohol dependence are also associated with altered steady-state levels of CHRNA5 mRNA.


Neuron | 2014

Alzheimer’s Disease Genetics: From the bench to the clinic

Celeste M. Karch; Carlos Cruchaga; Alison Goate

Alzheimers disease (AD) is a clinically heterogeneous neurodegenerative disease with a strong genetic component. Several genes have been associated with AD risk for nearly 20 years. However, it was not until the recent technological advances that allow for the analysis of millions of polymorphisms in thousands of subjects that we have been able to advance our understanding of the genetic complexity of AD susceptibility. Genome-wide association studies and whole-exome and whole-genome sequencing have revealed more than 20 loci associated with AD risk. These studies have provided insights into the molecular pathways that are altered in AD pathogenesis, which have, in turn, provided insight into novel therapeutic targets.


Neuron | 2013

GWAS of Cerebrospinal Fluid Tau Levels Identifies Risk Variants for Alzheimer’s Disease

Carlos Cruchaga; John Kauwe; Oscar Harari; Sheng Chih Jin; Yefei Cai; Celeste M. Karch; Bruno A. Benitez; Amanda T. Jeng; Tara Skorupa; David Carrell; Sarah Bertelsen; Matthew Bailey; David McKean; Joshua M. Shulman; Philip L. De Jager; Lori B. Chibnik; David A. Bennett; Steve E. Arnold; Denise Harold; Rebecca Sims; Amy Gerrish; Julie Williams; Vivianna M. Van Deerlin; Virginia M.-Y. Lee; Leslie M. Shaw; John Q. Trojanowski; Jonathan L. Haines; Richard Mayeux; Margaret A. Pericak-Vance; Lindsay A. Farrer

Cerebrospinal fluid (CSF) tau, tau phosphorylated at threonine 181 (ptau), and Aβ₄₂ are established biomarkers for Alzheimers disease (AD) and have been used as quantitative traits for genetic analyses. We performed the largest genome-wide association study for cerebrospinal fluid (CSF) tau/ptau levels published to date (n = 1,269), identifying three genome-wide significant loci for CSF tau and ptau: rs9877502 (p = 4.89 × 10⁻⁹ for tau) located at 3q28 between GEMC1 and OSTN, rs514716 (p = 1.07 × 10⁻⁸ and p = 3.22 × 10⁻⁹ for tau and ptau, respectively), located at 9p24.2 within GLIS3 and rs6922617 (p = 3.58 × 10⁻⁸ for CSF ptau) at 6p21.1 within the TREM gene cluster, a region recently reported to harbor rare variants that increase AD risk. In independent data sets, rs9877502 showed a strong association with risk for AD, tangle pathology, and global cognitive decline (p = 2.67 × 10⁻⁴, 0.039, 4.86 × 10⁻⁵, respectively) illustrating how this endophenotype-based approach can be used to identify new AD risk loci.


PLOS ONE | 2012

Rare Variants in APP, PSEN1 and PSEN2 Increase Risk for AD in Late-Onset Alzheimer's Disease Families

Carlos Cruchaga; Sumitra Chakraverty; Kevin Mayo; Francesco Vallania; Robi D. Mitra; Kelley Faber; Jennifer Williamson; Bird Td; Ramon Diaz-Arrastia; Tatiana Foroud; Bradley F. Boeve; Neill R. Graff-Radford; Pamela L. St. Jean; Michael Lawson; Margaret G. Ehm; Richard Mayeux; Alison Goate

Pathogenic mutations in APP, PSEN1, PSEN2, MAPT and GRN have previously been linked to familial early onset forms of dementia. Mutation screening in these genes has been performed in either very small series or in single families with late onset AD (LOAD). Similarly, studies in single families have reported mutations in MAPT and GRN associated with clinical AD but no systematic screen of a large dataset has been performed to determine how frequently this occurs. We report sequence data for 439 probands from late-onset AD families with a history of four or more affected individuals. Sixty sequenced individuals (13.7%) carried a novel or pathogenic mutation. Eight pathogenic variants, (one each in APP and MAPT, two in PSEN1 and four in GRN) three of which are novel, were found in 14 samples. Thirteen additional variants, present in 23 families, did not segregate with disease, but the frequency of these variants is higher in AD cases than controls, indicating that these variants may also modify risk for disease. The frequency of rare variants in these genes in this series is significantly higher than in the 1,000 genome project (p = 5.09×10−5; OR = 2.21; 95%CI = 1.49–3.28) or an unselected population of 12,481 samples (p = 6.82×10−5; OR = 2.19; 95%CI = 1.347–3.26). Rare coding variants in APP, PSEN1 and PSEN2, increase risk for or cause late onset AD. The presence of variants in these genes in LOAD and early-onset AD demonstrates that factors other than the mutation can impact the age at onset and penetrance of at least some variants associated with AD. MAPT and GRN mutations can be found in clinical series of AD most likely due to misdiagnosis. This study clearly demonstrates that rare variants in these genes could explain an important proportion of genetic heritability of AD, which is not detected by GWAS.

Collaboration


Dive into the Carlos Cruchaga's collaboration.

Top Co-Authors

Avatar

Alison Goate

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

John C. Morris

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

John Kauwe

Brigham Young University

View shared research outputs
Top Co-Authors

Avatar

Anne M. Fagan

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Sarah Bertelsen

Icahn School of Medicine at Mount Sinai

View shared research outputs
Top Co-Authors

Avatar

David M. Holtzman

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Bruno A. Benitez

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

John Budde

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Jorge L. Del-Aguila

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar

Oscar Harari

Washington University in St. Louis

View shared research outputs
Researchain Logo
Decentralizing Knowledge