Carlos D. Brondino
Universidade Nova de Lisboa
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Carlos D. Brondino.
Journal of Biological Inorganic Chemistry | 2004
José J. G. Moura; Carlos D. Brondino; José Trincão; Maria João Romão
Molybdenum and tungsten are second- and third-row transition elements, respectively, which are found in a mononuclear form in the active site of a diverse group of enzymes that generally catalyze oxygen atom transfer reactions. Mononuclear Mo-containing enzymes have been classified into three families: xanthine oxidase, DMSO reductase, and sulfite oxidase. The proteins of the DMSO reductase family present the widest diversity of properties among its members and our knowledge about this family was greatly broadened by the study of the enzymes nitrate reductase and formate dehydrogenase, obtained from different sources. We discuss in this review the information of the better characterized examples of these two types of Mo enzymes and W enzymes closely related to the members of the DMSO reductase family. We briefly summarize, also, the few cases reported so far for enzymes that can function either with Mo or W at their active site.
Journal of Biological Inorganic Chemistry | 2011
Cristiano S. Mota; Maria G. Rivas; Carlos D. Brondino; Isabel Moura; José J. G. Moura; Pablo J. González; Nuno M. F. S. A. Cerqueira
Metal-dependent formate dehydrogenases (Fdh) from prokaryotic organisms are members of the dimethyl sulfoxide reductase family of mononuclear molybdenum-containing and tungsten-containing enzymes. Fdhs catalyze the oxidation of the formate anion to carbon dioxide in a redox reaction that involves the transfer of two electrons from the substrate to the active site. The active site in the oxidized state comprises a hexacoordinated molybdenum or tungsten ion in a distorted trigonal prismatic geometry. Using this structural model, we calculated the catalytic mechanism of Fdh through density functional theory tools. The simulated mechanism was correlated with the experimental kinetic properties of three different Fdhs isolated from three different Desulfovibrio species. Our studies indicate that the C–H bond break is an event involved in the rate-limiting step of the catalytic cycle. The role in catalysis of conserved amino acid residues involved in metal coordination and near the metal active site is discussed on the basis of experimental and theoretical results.
Journal of Computational Chemistry | 2009
Nuno M. F. S. A. Cerqueira; Pablo J. González; Carlos D. Brondino; Maria João Romão; Carlos C. Romão; Isabel Moura; José J. G. Moura
The catalytic mechanism of nitrate reduction by periplasmic nitrate reductases has been investigated using theoretical and computational means. We have found that the nitrate molecule binds to the active site with the Mo ion in the +6 oxidation state. Electron transfer to the active site occurs only in the proton‐electron transfer stage, where the MoV species plays an important role in catalysis. The presence of the sulfur atom in the molybdenum coordination sphere creates a pseudo‐dithiolene ligand that protects it from any direct attack from the solvent. Upon the nitrate binding there is a conformational rearrangement of this ring that allows the direct contact of the nitrate with MoVI ion. This rearrangement is stabilized by the conserved methionines Met141 and Met308. The reduction of nitrate into nitrite occurs in the second step of the mechanism where the two dimethyl‐dithiolene ligands have a key role in spreading the excess of negative charge near the Mo atom to make it available for the chemical reaction. The reaction involves the oxidation of the sulfur atoms and not of the molybdenum as previously suggested. The mechanism involves a molybdenum and sulfur‐based redox chemistry instead of the currently accepted redox chemistry based only on the Mo ion. The second part of the mechanism involves two protonation steps that are promoted by the presence of MoV species. MoVI intermediates might also be present in this stage depending on the availability of protons and electrons. Once the water molecule is generated only the MoVI species allow water molecule dissociation, and, the concomitant enzymatic turnover.
Journal of the American Chemical Society | 2015
Sebastián A. Suárez; Nicolás I. Neuman; Martina Muñoz; Lucía P. Alvarez; Damián E. Bikiel; Carlos D. Brondino; Ivana Ivanović-Burmazović; Jan Lj. Miljkovic; Milos R. Filipovic; Marcelo A. Martí; Fabio Doctorovich
The role of NO in biology is well established. However, an increasing body of evidence suggests that azanone (HNO), could also be involved in biological processes, some of which are attributed to NO. In this context, one of the most important and yet unanswered questions is whether and how HNO is produced in vivo. A possible route concerns the chemical or enzymatic reduction of NO. In the present work, we have taken advantage of a selective HNO sensing method, to show that NO is reduced to HNO by biologically relevant alcohols with moderate reducing capacity, such as ascorbate or tyrosine. The proposed mechanism involves a nucleophilic attack to NO by the alcohol, coupled to a proton transfer (PCNA: proton-coupled nucleophilic attack) and a subsequent decomposition of the so-produced radical to yield HNO and an alkoxyl radical.
Journal of Biological Inorganic Chemistry | 2001
Hans Raaijmakers; Susana Teixeira; João Miguel Dias; Maria João Almendra; Carlos D. Brondino; Isabel Moura; José J. G. Moura; Maria João Romão
The tungsten-containing formate dehydrogenase (W-FDH) isolated from Desulfovibrio gigas has been crystallized in space group P21, with cell parameters a=73.8 Å, b=111.3 Å, c=156.6 Å and β=93.7°. These crystals diffract to beyond 2.0 Å on a synchrotron radiation source. W-FDH is a heterodimer (92 kDa and 29 kDa subunits) and two W-FDH molecules are present in the asymmetric unit. Although a molecular replacement solution was found using the periplasmic nitrate reductase as a search model, additional phasing information was needed. A multiple-wavelength anomalous dispersion (MAD) dataset was collected at the W- and Fe-edges, at four different wavelengths. Anomalous and dispersive difference data allowed us to unambiguously identify the metal atoms bound to W-FDH as one W atom with a Se-cysteine ligand as well as one [4Fe-4S] cluster in the 92 kDa subunit, and three additional [4Fe-4S] centers in the smaller 29 kDa subunit. The D. gigas W-FDH was previously characterized based on metal analysis and spectroscopic data. One W atom was predicted to be bound to two molybdopterin guanine dinucleotide (MGD) pterin cofactors and two [4Fe-4S] centers were proposed to be present. The crystallographic data now reported reveal a selenium atom (as a Se-cysteine) coordinating to the W site, as well as two extra [4Fe-4S] clusters not anticipated before. The EPR data were re-evaluated in the light of these new results.
Journal of the American Chemical Society | 2009
Teresa Santos-Silva; Felix M. Ferroni; Anders Thapper; Jacopo Marangon; Pablo J. González; Alberto C. Rizzi; Isabel Moura; José J. G. Moura; Maria João Romão; Carlos D. Brondino
Aldehyde oxidoreductase from Desulfovibrio gigas (DgAOR) is a member of the xanthine oxidase (XO) family of mononuclear Mo-enzymes that catalyzes the oxidation of aldehydes to carboxylic acids. The molybdenum site in the enzymes of the XO family shows a distorted square pyramidal geometry in which two ligands, a hydroxyl/water molecule (the catalytic labile site) and a sulfido ligand, have been shown to be essential for catalysis. We report here steady-state kinetic studies of DgAOR with the inhibitors cyanide, ethylene glycol, glycerol, and arsenite, together with crystallographic and EPR studies of the enzyme after reaction with the two alcohols. In contrast to what has been observed in other members of the XO family, cyanide, ethylene glycol, and glycerol are reversible inhibitors of DgAOR. Kinetic data with both cyanide and samples prepared from single crystals confirm that DgAOR does not need a sulfido ligand for catalysis and confirm the absence of this ligand in the coordination sphere of the molybdenum atom in the active enzyme. Addition of ethylene glycol and glycerol to dithionite-reduced DgAOR yields rhombic Mo(V) EPR signals, suggesting that the nearly square pyramidal coordination of the active enzyme is distorted upon alcohol inhibition. This is in agreement with the X-ray structure of the ethylene glycol and glycerol-inhibited enzyme, where the catalytically labile OH/OH(2) ligand is lost and both alcohols coordinate the Mo site in a eta(2) fashion. The two adducts present a direct interaction between the molybdenum and one of the carbon atoms of the alcohol moiety, which constitutes the first structural evidence for such a bond in a biological system.
Journal of Bacteriology | 2011
Cristiano S. Mota; Odile Valette; Pablo J. González; Carlos D. Brondino; José J. G. Moura; Isabel Moura; Alain Dolla; Maria G. Rivas
Formate dehydrogenases (FDHs) are enzymes that catalyze the formate oxidation to carbon dioxide and that contain either Mo or W in a mononuclear form in the active site. In the present work, the influence of Mo and W salts on the production of FDH by Desulfovibrio alaskensis NCIMB 13491 was studied. Two different FDHs, one containing W (W-FDH) and a second incorporating either Mo or W (Mo/W-FDH), were purified. Both enzymes were isolated from cells grown in a medium supplemented with 1 μM molybdate, whereas only the W-FDH was purified from cells cultured in medium supplemented with 10 μM tungstate. We demonstrated that the genes encoding the Mo/W-FDH are strongly downregulated by W and slightly upregulated by Mo. Metal effects on the expression level of the genes encoding the W-FDH were less significant. Furthermore, the expression levels of the genes encoding proteins involved in molybdate and tungstate transport are downregulated under the experimental conditions evaluated in this work. The molecular and biochemical properties of these enzymes and the selective incorporation of either Mo or W are discussed.
Inorganica Chimica Acta | 2000
Alberto C. Rizzi; Oscar E. Piro; Eduardo E. Castellano; Otaciro R. Nascimento; Carlos D. Brondino
Abstract We report the structure and single crystal EPR studies at 9.8 and 33.3 GHz of the title compound, [Cu(C4H8NO3)2]·H2O. The Cu(II) ion is in an elongated octahedral environment equatorially trans-coordinated by two oxygen atoms and two nitrogen atoms of threonine molecules which act as bidentate ligands (mean d(CuO)=1.95(1) and d(CuN)=1.98(1) A). It is axially coordinated by carboxylic oxygen atoms belonging to a pair of molecules translated in ±b (CuO distances of 2.478(8) and 2.972(3) A). This axial O⋯Cu⋯O interaction gives rise to infinite copper ion chains along the b crystal axis. Neighboring chains are coupled through complex chemical paths including H-bonds and the amino acid side chain. Single crystal EPR spectra show a single, exchange-collapsed resonance at both microwave frequencies for any magnetic field orientation. We evaluated the crystal and the molecular g-tensors from the angular variation of the EPR line position. The results (g⊥=2.060(2) and g∣∣=2.240(3)) indicate that the electronic ground orbital of the Cu ions is mainly of the 3dx2−y2 type. The analysis of the angular variation of the EPR linewidth allows us to estimate a mean exchange coupling constant ∣J/k∣=1.45(5) K for the inter-chain chemical paths.
Biochemistry | 2009
Maria G. Rivas; Marta S. P. Carepo; Cristiano S. Mota; Malgorzata Korbas; Marie-Claire Durand; Ana T. Lopes; Carlos D. Brondino; Alice S. Pereira; Graham N. George; Alain Dolla; José J. G. Moura; Isabel Moura
The characterization of a novel Mo-Fe protein (MorP) associated with a system that responds to Mo in Desulfovibrio alaskensis is reported. Biochemical characterization shows that MorP is a periplasmic homomultimer of high molecular weight (260 +/- 13 kDa) consisting of 16-18 monomers of 15321.1 +/- 0.5 Da. The UV/visible absorption spectrum of the as-isolated protein shows absorption peaks around 280, 320, and 570 nm with extinction coefficients of 18700, 12800, and 5000 M(-1) cm(-1), respectively. Metal content, EXAFS data and DFT calculations support the presence of a Mo-2S-[2Fe-2S]-2S-Mo cluster never reported before. Analysis of the available genomes from Desulfovibrio species shows that the MorP encoding gene is located downstream of a sensor and a regulator gene. This type of gene arrangement, called two component system, is used by the cell to regulate diverse physiological processes in response to changes in environmental conditions. Increase of both gene expression and protein production was observed when cells were cultured in the presence of 45 microM molybdenum. Involvement of this system in Mo tolerance of sulfate reducing bacteria is proposed.
Biochimica et Biophysica Acta | 2012
Jacopo Marangon; Patrícia M. Paes de Sousa; Isabel Moura; Carlos D. Brondino; José J. G. Moura; Pablo J. González
The respiratory nitrate reductase complex (NarGHI) from Marinobacter hydrocarbonoclasticus 617 (Mh, formerly Pseudomonas nautica 617) catalyzes the reduction of nitrate to nitrite. This reaction is the first step of the denitrification pathway and is coupled to the quinone pool oxidation and proton translocation to the periplasm, which generates the proton motive force needed for ATP synthesis. The Mh NarGH water-soluble heterodimer has been purified and the kinetic and redox properties have been studied through in-solution enzyme kinetics, protein film voltammetry and spectropotentiometric redox titration. The kinetic parameters of Mh NarGH toward substrates and inhibitors are consistent with those reported for other respiratory nitrate reductases. Protein film voltammetry showed that at least two catalytically distinct forms of the enzyme, which depend on the applied potential, are responsible for substrate reduction. These two forms are affected differentially by the oxidizing substrate, as well as by pH and inhibitors. A new model for the potential dependence of the catalytic efficiency of Nars is proposed.