Carlos D. Hoyos
Georgia Institute of Technology
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Carlos D. Hoyos.
Journal of Climate | 2007
Carlos D. Hoyos; Peter J. Webster
Abstract The structure of the mean precipitation of the south Asian monsoon is spatially complex. Embedded in a broad precipitation maximum extending eastward from 70°E to the northwest tropical Pacific Ocean are strong local maxima to the west of the Western Ghats mountain range of India, in Cambodia extending into the eastern China Sea, and over the eastern tropical Indian Ocean and the Bay of Bengal (BoB), where the strongest large-scale global maximum in precipitation is located. In general, the maximum precipitation occurs over the oceans and not over the land regions. Distinct temporal variability also exists with time scales ranging from days to decades. Neither the spatial nor temporal variability of the monsoon can be explained simply as the response to the cross-equatorial pressure gradient force between the continental regions of Asia and the oceans of the Southern Hemisphere, as suggested in classical descriptions of the monsoon. Monthly (1979–2005) and daily (1997–present) rainfall estimates ...
Bulletin of the American Meteorological Society | 2004
Peter J. Webster; Carlos D. Hoyos
Most attempts at predicting south Asian monsoon variability have concentrated on seasonally averaged rainfall over the Indian subcontinent some months in advance using regional and remote boundary effects as predictors. Overall, about 30% of the variance of mean seasonal monsoon rainfall can be explained, but the statistics appear to be nonstationary and correlations vary strongly on interdecadal time scales. Model intercomparisons show that climate models have difficulty in simulating even gross-scale features of the monsoon such as mean summer rainfall, and there is little demonstrated skill when the models are used in predictive mode. Even if the statistics were stable and model predictions were skillful it is argued that the information is not readily downscalable because the mean rainfall does not define the timing or number of intraseasonal variations or even the spatial distributions of the seasonal mean rainfall. Based on these concerns, it is argued that skillful and timely forecasts of intraseas...
Journal of Climate | 2009
Lina I Ceballos; Emanuele Di Lorenzo; Carlos D. Hoyos; Niklas Schneider; Bunmei Taguchi
Abstract Recent studies have identified the North Pacific Gyre Oscillation (NPGO) as a mode of climate variability that is linked to previously unexplained fluctuations of salinity, nutrient, and chlorophyll in the northeast Pacific. The NPGO reflects changes in strength of the central and eastern branches of the subtropical gyre and is driven by the atmosphere through the North Pacific Oscillation (NPO), the second dominant mode of sea level pressure variability in the North Pacific. It is shown that Rossby wave dynamics excited by the NPO propagate the NPGO signature in the sea surface height (SSH) field from the central North Pacific into the Kuroshio–Oyashio Extension (KOE), and trigger changes in the strength of the KOE with a lag of 2–3 yr. This suggests that the NPGO index can be used to track changes in the entire northern branch of the North Pacific subtropical gyre. These results also provide a physical mechanism to explain coherent decadal climate variations and ecosystem changes between the No...
Bulletin of the American Meteorological Society | 2010
Peter J. Webster; Jun Jian; Thomas M. Hopson; Carlos D. Hoyos; Paula A. Agudelo; Hai-Ru Chang; Judith A. Curry; Robert L. Grossman; T. N. Palmer; A. R. Subbiah
The authors have developed a new extended-range flood forecasting system for large river basins that uses satellite data and statistically rendered probabilistic weather and climate predictions to initialize basin-scale hydrological models. The forecasting system overcomes the absence of upstreamflow data, a problem that is prevalent in the developing world. Forecasts of the Ganges and Brahmaputra discharge into Bangladesh were made in real time on 1–10-day time horizons for the period 2003–08. Serious flooding of the Brahmaputra occurred in 2004, 2007, and 2008. Detailed forecasts of the flood onset and withdrawal were made 10 days in advance for each of the flooding events with correlations at 10 days ≥0.8 and Brier scores <0.05. Extensions to 15 days show useable skill. Based on the 1–10-day forecasts of the 2007 and 2008 floods, emergency managers in Bangladesh were able to act preemptively, arrange the evacuation of populations in peril along the Brahmaputra, and minimize financial loss. The particul...
Journal of Climate | 2008
Hye-Mi Kim; Carlos D. Hoyos; Peter J. Webster; In-Sik Kang
Abstract The influence of sea surface temperature (SST) on the simulation and predictability of the Madden–Julian oscillation (MJO) is examined using the Seoul National University atmospheric general circulation model (SNU AGCM). Forecast skill was examined using serial climate simulations spanning eight different winter seasons with 30-day forecasts commencing every 5 days, giving a total of 184 thirty-day simulations. The serial runs were repeated using prescribing observed SST with monthly, weekly, and daily temporal resolutions. The mean SST was the same for all cases so that differences between experiments result from the different temporal resolutions of the SST boundary forcing. It is shown that high temporal SST frequency acts to improve 1) the MJO activity of 200-hPa velocity potential field over the entire Asian monsoon region at all lead times; 2) the percentage of filtered variance of the two leading EOF modes that explain the eastward propagation of MJO; 3) the power of the wavenumber 1 eastw...
Journal of Climate | 2010
Manuel D. Zuluaga; Carlos D. Hoyos; Peter J. Webster
Abstract Information from the Tropical Rainfall Measuring Mission (TRMM) level 3 monthly 0.5° × 0.5° Convective and Stratiform Heating (CSH) product and TRMM Microwave Imager (TMI) 2A12 datasets is used to examine the four-dimensional latent heating (LH) structure over the Asian monsoon region between 1998 and 2006. High sea surface temperatures, ocean–land contrasts, and complex terrain produce large precipitation and atmospheric heating rates whose spatial and temporal characteristics are relatively undocumented. Analyses show interannual and intraseasonal LH variations with a large fraction of the interannual variability induced by internal intraseasonal variability. Also, the analyses identify a spatial dipole of LH anomalies between the equatorial Indian Ocean and the Bay of Bengal regions occurring during the summer active and suppressed phases of the monsoon intraseasonal oscillation. Comparisons made between the TRMM CSH and TMI 2A12 datasets indicate differences in the shape of the vertical profi...
Science | 2006
Carlos D. Hoyos; Paula A. Agudelo; Peter J. Webster; Judith A. Curry
Climate Dynamics | 2011
Matthew J. Widlansky; Peter J. Webster; Carlos D. Hoyos
Quarterly Journal of the Royal Meteorological Society | 2009
Jun Jian; Peter J. Webster; Carlos D. Hoyos
Climate Dynamics | 2010
Hye-Mi Kim; Carlos D. Hoyos; Peter J. Webster; In-Sik Kang