Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carlos E. Castro is active.

Publication


Featured researches published by Carlos E. Castro.


Journal of Biological Chemistry | 2009

The αβ T Cell Receptor Is an Anisotropic Mechanosensor

Sun Taek Kim; Koh Takeuchi; Zhen-Yu J. Sun; Maki Touma; Carlos E. Castro; Amr F. Fahmy; Matthew J. Lang; Gerhard Wagner; Ellis L. Reinherz

Thymus-derived lymphocytes protect mammalian hosts against virus- or cancer-related cellular alterations through immune surveillance, eliminating diseased cells. In this process, T cell receptors (TCRs) mediate both recognition and T cell activation via their dimeric αβ, CD3ϵγ, CD3ϵδ, and CD3ζζ subunits using an unknown structural mechanism. Here, site-specific binding topology of anti-CD3 monoclonal antibodies (mAbs) and dynamic TCR quaternary change provide key clues. Agonist mAbs footprint to the membrane distal CD3ϵ lobe that they approach diagonally, adjacent to the lever-like Cβ FG loop that facilitates antigen (pMHC)-triggered activation. In contrast, a non-agonist mAb binds to the cleft between CD3ϵ and CD3γ in a perpendicular mode and is stimulatory only subsequent to an external tangential but not a normal force (∼50 piconewtons) applied via optical tweezers. Specific pMHC but not irrelevant pMHC activates a T cell upon application of a similar force. These findings suggest that the TCR is an anisotropic mechanosensor, converting mechanical energy into a biochemical signal upon specific pMHC ligation during immune surveillance. Activating anti-CD3 mAbs mimic this force via their intrinsic binding mode. A common TCR quaternary change rather than conformational alterations can better facilitate structural signal initiation, given the vast array of TCRs and their specific pMHC ligands.


Proceedings of the National Academy of Sciences of the United States of America | 2015

Programmable motion of DNA origami mechanisms

Alexander E. Marras; Lifeng Zhou; Hai-Jun Su; Carlos E. Castro

Significance Folding DNA into complex 3D shapes (DNA origami) has emerged as a powerful method for the precise design and fabrication of self-assembled nanodevices. Current efforts have focused largely on developing static objects or structures with small movements and/or unspecified motion paths. Here we establish a basis for developing DNA-based nanomachines by creating dynamic mechanisms with well-defined motion. We demonstrate the design of nanoscale 1D, 2D, and 3D motion by integrating concepts from engineering machine design with DNA origami nanotechnology. DNA origami enables the precise fabrication of nanoscale geometries. We demonstrate an approach to engineer complex and reversible motion of nanoscale DNA origami machine elements. We first design, fabricate, and characterize the mechanical behavior of flexible DNA origami rotational and linear joints that integrate stiff double-stranded DNA components and flexible single-stranded DNA components to constrain motion along a single degree of freedom and demonstrate the ability to tune the flexibility and range of motion. Multiple joints with simple 1D motion were then integrated into higher order mechanisms. One mechanism is a crank–slider that couples rotational and linear motion, and the other is a Bennett linkage that moves between a compacted bundle and an expanded frame configuration with a constrained 3D motion path. Finally, we demonstrate distributed actuation of the linkage using DNA input strands to achieve reversible conformational changes of the entire structure on ∼minute timescales. Our results demonstrate programmable motion of 2D and 3D DNA origami mechanisms constructed following a macroscopic machine design approach.


Journal of Optics | 2007

Passive and active microrheology with optical tweezers

Ricardo R. Brau; Jorge Ferrer; Hyungsuk Lee; Carlos E. Castro; Barney K. Tam; Peter B. Tarsa; Paul Matsudaira; Mary C. Boyce; Roger D. Kamm; Matthew J. Lang

Efforts at understanding the behaviour of complex materials at the micro scale have led to the development of many microrheological techniques capable of probing viscoelastic behaviour. Among these, optical tweezers have been extensively developed for biophysical applications: they offer several advantages over traditional techniques, and can be employed in both passive and active microrheology. In this report, we outline several methods that can be used with optical tweezers to measure the microrheological behaviour of materials such as glycerol, methylcellulose solutions, actin matrices, and cellular membranes. In addition, we quantify the effect that the index of refraction of the solution has on the stiffness of the optical trap. Our results indicate that optical tweezers force microscopy is a versatile tool for the exploration of viscoelastic behaviour in a range of substrates at the micro scale.


Nature Structural & Molecular Biology | 2010

Optical trapping with high forces reveals unexpected behaviors of prion fibrils

Jijun Dong; Carlos E. Castro; Mary C. Boyce; Matthew J. Lang; Susan Lindquist

Amyloid fibrils are important in diverse cellular functions, feature in many human diseases and have potential applications in nanotechnology. Here we describe methods that combine optical trapping and fluorescent imaging to characterize the forces that govern the integrity of amyloid fibrils formed by a yeast prion protein. A crucial advance was to use the self-templating properties of amyloidogenic proteins to tether prion fibrils, enabling their manipulation in the optical trap. At normal pulling forces the fibrils were impervious to disruption. At much higher forces (up to 250 pN), discontinuities occurred in force-extension traces before fibril rupture. Experiments with selective amyloid-disrupting agents and mutations demonstrated that such discontinuities were caused by the unfolding of individual subdomains. Thus, our results reveal unusually strong noncovalent intermolecular contacts that maintain fibril integrity even when individual monomers partially unfold and extend fibril length.


Small | 2016

Daunorubicin‐Loaded DNA Origami Nanostructures Circumvent Drug‐Resistance Mechanisms in a Leukemia Model

Patrick D. Halley; Christopher R. Lucas; Emily M. McWilliams; Matthew J. Webber; Randy A. Patton; Comert Kural; David M. Lucas; John C. Byrd; Carlos E. Castro

Many cancers show primary or acquired drug resistance due to the overexpression of efflux pumps. A novel mechanism to circumvent this is to integrate drugs, such as anthracycline antibiotics, with nanoparticle delivery vehicles that can bypass intrinsic tumor drug-resistance mechanisms. DNA nanoparticles serve as an efficient binding platform for intercalating drugs (e.g., anthracyclines doxorubicin and daunorubicin, which are widely used to treat acute leukemias) and enable precise structure design and chemical modifications, for example, for incorporating targeting capabilities. Here, DNA nanostructures are utilized to circumvent daunorubicin drug resistance at clinically relevant doses in a leukemia cell line model. The fabrication of a rod-like DNA origami drug carrier is reported that can be controllably loaded with daunorubicin. It is further directly verified that nanostructure-mediated daunorubicin delivery leads to increased drug entry and retention in cells relative to free daunorubicin at equal concentrations, which yields significantly enhanced drug efficacy. Our results indicate that DNA origami nanostructures can circumvent efflux-pump-mediated drug resistance in leukemia cells at clinically relevant drug concentrations and provide a robust DNA nanostructure design that could be implemented in a wide range of cellular applications due to its remarkably fast self-assembly (≈5 min) and excellent stability in cell culture conditions.


Nanotechnology | 2011

DNA origami-based nanoribbons: assembly, length distribution, and twist

Ralf Jungmann; Max Scheible; Anton Kuzyk; Günther Pardatscher; Carlos E. Castro; Friedrich C. Simmel

A variety of polymerization methods for the assembly of elongated nanoribbons from rectangular DNA origami structures are investigated. The most efficient method utilizes single-stranded DNA oligonucleotides to bridge an intermolecular scaffold seam between origami monomers. This approach allows the fabrication of origami ribbons with lengths of several micrometers, which can be used for long-range ordered arrangement of proteins. It is quantitatively shown that the length distribution of origami ribbons obtained with this technique follows the theoretical prediction for a simple linear polymerization reaction. The design of flat single layer origami structures with constant crossover spacing inevitably results in local underwinding of the DNA helix, which leads to a global twist of the origami structures that also translates to the nanoribbons.


ACS Nano | 2014

DNA Origami Compliant Nanostructures with Tunable Mechanical Properties

Lifeng Zhou; Alexander E. Marras; Hai-Jun Su; Carlos E. Castro

DNA origami enables fabrication of precise nanostructures by programming the self-assembly of DNA. While this approach has been used to make a variety of complex 2D and 3D objects, the mechanical functionality of these structures is limited due to their rigid nature. We explore the fabrication of deformable, or compliant, objects to establish a framework for mechanically functional nanostructures. This compliant design approach is used in macroscopic engineering to make devices including sensors, actuators, and robots. We build compliant nanostructures by utilizing the entropic elasticity of single-stranded DNA (ssDNA) to locally bend bundles of double-stranded DNA into bent geometries whose curvature and mechanical properties can be tuned by controlling the length of ssDNA strands. We demonstrate an ability to achieve a wide range of geometries by adjusting a few strands in the nanostructure design. We further developed a mechanical model to predict both geometry and mechanical properties of our compliant nanostructures that agrees well with experiments. Our results provide a basis for the design of mechanically functional DNA origami devices and materials.


Nano Letters | 2015

Direct Design of an Energy Landscape with Bistable DNA Origami Mechanisms

Lifeng Zhou; Alexander E. Marras; Hai-Jun Su; Carlos E. Castro

Structural DNA nanotechnology provides a feasible technique for the design and fabrication of complex geometries even exhibiting controllable dynamic behavior. Recently we have demonstrated the possibility of implementing macroscopic engineering design approaches to construct DNA origami mechanisms (DOM) with programmable motion and tunable flexibility. Here, we implement the design of compliant DNA origami mechanisms to extend from prescribing motion to prescribing an energy landscape. Compliant mechanisms facilitate motion via deformation of components with tunable stiffness resulting in well-defined mechanical energy stored in the structure. We design, fabricate, and characterize a DNA origami nanostructure with an energy landscape defined by two stable states (local energy minima) separated by a designed energy barrier. This nanostructure is a four-bar bistable mechanism with two undeformed states. Traversing between those states requires deformation, and hence mechanical energy storage, in a compliant arm of the linkage. The energy barrier for switching between two states was obtained from the conformational distribution based on a Boltzmann probability function and closely follows a predictive mechanical model. Furthermore, we demonstrated the ability to actuate the mechanism into one stable state via additional DNA inputs and then release the actuation via DNA strand displacement. This controllable multistate system establishes a foundation for direct design of energy landscapes that regulate conformational dynamics similar to biomolecular complexes.


Analytical Chemistry | 2013

Detection of extracellular RNAs in cancer and viral infection via tethered cationic lipoplex nanoparticles containing molecular beacons.

Yun Wu; Kwang Joo Kwak; Kitty Agarwal; Alexander E. Marras; Chao Wang; Yicheng Mao; Xiaomeng Huang; Junyu Ma; Bo Yu; Robert J. Lee; Anil Vachani; Guido Marcucci; John C. Byrd; Natarajan Muthusamy; Gregory A. Otterson; Kun Huang; Carlos E. Castro; Michael E. Paulaitis; Serge P. Nana-Sinkam; L. James Lee

Noninvasive early detection methods have the potential to reduce mortality rates of both cancer and infectious diseases. Here, we present a novel assay by which tethered cationic lipoplex nanoparticles containing molecular beacons (MBs) can capture cancer cell-derived exosomes or viruses and identify encapsulated RNAs in a single step. A series of ultracentrifugation and Exoquick isolation kit were first used to isolate exosomes from the cell culture medium and human serum, respectively. Cationic lipoplex nanoparticles linked onto the surface of a thin glass plate capture negatively charged viruses or cell-secreted exosomes by electrostatic interactions to form larger nanoscale complexes. Lipoplex/virus or lipoplex/exosome fusion leads to the mixing of viral/exosomal RNAs and MBs within the lipoplexes. After the target RNAs specially bind to the MBs, exosomes enriched in target RNAs are readily identified by the fluorescence signals of MBs. The in situ detection of target extracellular RNAs without diluting the samples leads to high detection sensitivity not achievable by existing methods, e.g., quantitative reverse transcription-polymerase chain reaction (qRT-PCR). Here we demonstrate this concept using lentivirus and serum from lung cancer patients.


Journal of Polymer Engineering | 2005

Simultaneous Optimization of Mold Design and Processing Conditions in Injection Molding

Carlos E. Castro; Mauricio Cabrera Ríos; Blaine Lilly; Jose M. Castro

Injection molding (IM) is considered the foremost process for mass-producing plastic products. One of the biggest challenges facing injection molders today is to determine the proper settings for the IM process variables. Selecting the proper settings for an IM process is crucial because the behavior of the polymeric material during shaping is highly influenced by the process variables. Consequently, the process variables govern the quality of the part produced. The difficulty of optimizing an IM process is that the performance measures (PMs), such as surface quality or cycle time, that characterize the adequacy of part, process, or machine to intended purposes, usually show conflicting behavior. Therefore, a compromise must be found between all of the PMs of interest. In the past, we have shown a method comprised of Computer Aided Engineering, Artificial Neural Networks, and Data Envelopment Analysis (DEA) that can be used to find the best compromises between several performance measures. The analyses presented in this paper are geared to make informed decisions on the compromises of several performance measures. These analyses also allow for the identification of robust variable settings that might help to define a starting point for negotiation between multiple decision makers. Future work will include adding information about the variability of PMs on the DEA analysis and the determination of process windows with efficiency considerations. This paper discusses the application of this method to IM and how to exploit the results to determine robust process and design settings.

Collaboration


Dive into the Carlos E. Castro's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jijun Dong

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge