Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carlos Guestrin is active.

Publication


Featured researches published by Carlos Guestrin.


very large data bases | 2012

Distributed GraphLab: a framework for machine learning and data mining in the cloud

Yucheng Low; Danny Bickson; Joseph E. Gonzalez; Carlos Guestrin; Aapo Kyrola; Joseph M. Hellerstein

While high-level data parallel frameworks, like MapReduce, simplify the design and implementation of large-scale data processing systems, they do not naturally or efficiently support many important data mining and machine learning algorithms and can lead to inefficient learning systems. To help fill this critical void, we introduced the GraphLab abstraction which naturally expresses asynchronous, dynamic, graph-parallel computation while ensuring data consistency and achieving a high degree of parallel performance in the shared-memory setting. In this paper, we extend the GraphLab framework to the substantially more challenging distributed setting while preserving strong data consistency guarantees. We develop graph based extensions to pipelined locking and data versioning to reduce network congestion and mitigate the effect of network latency. We also introduce fault tolerance to the GraphLab abstraction using the classic Chandy-Lamport snapshot algorithm and demonstrate how it can be easily implemented by exploiting the GraphLab abstraction itself. Finally, we evaluate our distributed implementation of the GraphLab abstraction on a large Amazon EC2 deployment and show 1-2 orders of magnitude performance gains over Hadoop-based implementations.


information processing in sensor networks | 2004

Distributed regression: an efficient framework for modeling sensor network data

Carlos Guestrin; Peter Bodik; Romain Thibaux; Mark A. Paskin; Samuel Madden

We present distributed regression, an efficient and general framework for in-network modeling of sensor data. In this framework, the nodes of the sensor network collaborate to optimally fit a global function to each of their local measurements. The algorithm is based upon kernel linear regression, where the model takes the form of a weighted sum of local basis functions; this provides an expressive yet tractable class of models for sensor network data. Rather than transmitting data to one another or outside the network, nodes communicate constraints on the model parameters, drastically reducing the communication required. After the algorithm is run, each node can answer queries for its local region, or the nodes can efficiently transmit the parameters of the model to a user outside the network. We present an evaluation of the algorithm based upon data from a 48-node sensor network deployment at the Intel Research - Berkeley Lab, demonstrating that our distributed algorithm converges to the optimal solution at a fast rate and is very robust to packet losses.


international conference on machine learning | 2005

Learning structured prediction models: a large margin approach

Benjamin Taskar; Vassil Chatalbashev; Daphne Koller; Carlos Guestrin

We consider large margin estimation in a broad range of prediction models where inference involves solving combinatorial optimization problems, for example, weighted graph-cuts or matchings. Our goal is to learn parameters such that inference using the model reproduces correct answers on the training data. Our method relies on the expressive power of convex optimization problems to compactly capture inference or solution optimality in structured prediction models. Directly embedding this structure within the learning formulation produces concise convex problems for efficient estimation of very complex and diverse models. We describe experimental results on a matching task, disulfide connectivity prediction, showing significant improvements over state-of-the-art methods.


information processing in sensor networks | 2006

Near-optimal sensor placements: maximizing information while minimizing communication cost

Andreas Krause; Carlos Guestrin; Anupam Gupta; Jon M. Kleinberg

When monitoring spatial phenomena with wireless sensor networks, selecting the best sensor placements is a fundamental task. Not only should the sensors be informative, but they should also be able to communicate efficiently. In this paper, we present a data-driven approach that addresses the three central aspects of this problem: measuring the predictive quality of a set of sensor locations (regardless of whether sensors were ever placed at these locations), predicting the communication cost involved with these placements, and designing an algorithm with provable quality guarantees that optimizes the NP-hard tradeoff. Specifically, we use data from a pilot deployment to build non-parametric probabilistic models called Gaussian Processes (GPs) both for the spatial phenomena of interest and for the spatial variability of link qualities, which allows us to estimate predictive power and communication cost of un-sensed locations. Surprisingly, uncertainty in the representation of link qualities plays an important role in estimating communication costs. Using these models, we present a novel, polynomial-time, data-driven algorithm, pSPIEL, which selects Sensor Placements at Informative and cost-Effective Locations. Our approach exploits two important properties of this problem: submodularity, formalizing the intuition that adding a node to a small deployment can help more than adding a node to a large deployment; and locality, under which nodes that are far from each other provide almost independent information. Exploiting these properties, we prove strong approximation guarantees for our pSPlEL approach. We also provide extensive experimental validation of this practical approach on several real-world placement problems, and built a complete system implementation on 46 Tmote Sky motes, demonstrating significant advantages over existing methods


knowledge discovery and data mining | 2016

Why Should I Trust You?: Explaining the Predictions of Any Classifier

Marco Túlio de Freitas Ribeiro; Sameer Singh; Carlos Guestrin

Despite widespread adoption, machine learning models remain mostly black boxes. Understanding the reasons behind predictions is, however, quite important in assessing trust, which is fundamental if one plans to take action based on a prediction, or when choosing whether to deploy a new model. Such understanding also provides insights into the model, which can be used to transform an untrustworthy model or prediction into a trustworthy one. In this work, we propose LIME, a novel explanation technique that explains the predictions of any classifier in an interpretable and faithful manner, by learning an interpretable model locally varound the prediction. We also propose a method to explain models by presenting representative individual predictions and their explanations in a non-redundant way, framing the task as a submodular optimization problem. We demonstrate the flexibility of these methods by explaining different models for text (e.g. random forests) and image classification (e.g. neural networks). We show the utility of explanations via novel experiments, both simulated and with human subjects, on various scenarios that require trust: deciding if one should trust a prediction, choosing between models, improving an untrustworthy classifier, and identifying why a classifier should not be trusted.


Journal of Artificial Intelligence Research | 2003

Efficient solution algorithms for factored MDPs

Carlos Guestrin; Daphne Koller; Ronald Parr; Shobha Venkataraman

This paper addresses the problem of planning under uncertainty in large Markov Decision Processes (MDPs). Factored MDPs represent a complex state space using state variables and the transition model using a dynamic Bayesian network. This representation often allows an exponential reduction in the representation size of structured MDPs, but the complexity of exact solution algorithms for such MDPs can grow exponentially in the representation size. In this paper, we present two approximate solution algorithms that exploit structure in factored MDPs. Both use an approximate value function represented as a linear combination of basis functions, where each basis function involves only a small subset of the domain variables. A key contribution of this paper is that it shows how the basic operations of both algorithms can be performed efficiently in closed form, by exploiting both additive and context-specific structure in a factored MDP. A central element of our algorithms is a novel linear program decomposition technique, analogous to variable elimination in Bayesian networks, which reduces an exponentially large LP to a provably equivalent, polynomial-sized one. One algorithm uses approximate linear programming, and the second approximate dynamic programming. Our dynamic programming algorithm is novel in that it uses an approximation based on max-norm, a technique that more directly minimizes the terms that appear in error bounds for approximate MDP algorithms. We provide experimental results on problems with over 1040 states, demonstrating a promising indication of the scalability of our approach, and compare our algorithm to an existing state-of-the-art approach, showing, in some problems, exponential gains in computation time.


international conference on machine learning | 2005

Near-optimal sensor placements in Gaussian processes

Carlos Guestrin; Andreas Krause; Ajit Paul Singh

When monitoring spatial phenomena, which are often modeled as Gaussian Processes (GPs), choosing sensor locations is a fundamental task. A common strategy is to place sensors at the points of highest entropy (variance) in the GP model. We propose a mutual information criteria, and show that it produces better placements. Furthermore, we prove that finding the configuration that maximizes mutual information is NP-complete. To address this issue, we describe a polynomial-time approximation that is within (1 -- 1/e) of the optimum by exploiting the submodularity of our criterion. This algorithm is extended to handle local structure in the GP, yielding significant speedups. We demonstrate the advantages of our approach on two real-world data sets.


Journal of Artificial Intelligence Research | 2009

Efficient informative sensing using multiple robots

Amarjeet Singh; Andreas Krause; Carlos Guestrin; William J. Kaiser

The need for efficient monitoring of spatio-temporal dynamics in large environmental applications, such as the water quality monitoring in rivers and lakes, motivates the use of robotic sensors in order to achieve sufficient spatial coverage. Typically, these robots have bounded resources, such as limited battery or limited amounts of time to obtain measurements. Thus, careful coordination of their paths is required in order to maximize the amount of information collected, while respecting the resource constraints. In this paper, we present an efficient approach for near-optimally solving the NP-hard optimization problem of planning such informative paths. In particular, we first develop eSIP (efficient Single-robot Informative Path planning), an approximation algorithm for optimizing the path of a single robot. Hereby, we use a Gaussian Process to model the underlying phenomenon, and use the mutual information between the visited locations and remainder of the space to quantify the amount of information collected. We prove that the mutual information collected using paths obtained by using eSIP is close to the information obtained by an optimal solution. We then provide a general technique, sequential allocation, which can be used to extend any single robot planning algorithm, such as eSIP, for the multi-robot problem. This procedure approximately generalizes any guarantees for the single-robot problem to the multi-robot case. We extensively evaluate the effectiveness of our approach on several experiments performed infield for two important environmental sensing applications, lake and river monitoring, and simulation experiments performed using several real world sensor network data sets.


computer vision and pattern recognition | 2014

Learning Everything about Anything: Webly-Supervised Visual Concept Learning

Santosh Kumar Divvala; Ali Farhadi; Carlos Guestrin

Recognition is graduating from labs to real-world applications. While it is encouraging to see its potential being tapped, it brings forth a fundamental challenge to the vision researcher: scalability. How can we learn a model for any concept that exhaustively covers all its appearance variations, while requiring minimal or no human supervision for compiling the vocabulary of visual variance, gathering the training images and annotations, and learning the models? In this paper, we introduce a fully-automated approach for learning extensive models for a wide range of variations (e.g. actions, interactions, attributes and beyond) within any concept. Our approach leverages vast resources of online books to discover the vocabulary of variance, and intertwines the data collection and modeling steps to alleviate the need for explicit human supervision in training the models. Our approach organizes the visual knowledge about a concept in a convenient and useful way, enabling a variety of applications across vision and NLP. Our online system has been queried by users to learn models for several interesting concepts including breakfast, Gandhi, beautiful, etc. To date, our system has models available for over 50, 000 variations within 150 concepts, and has annotated more than 10 million images with bounding boxes.


knowledge discovery and data mining | 2010

Connecting the dots between news articles

Dafna Shahaf; Carlos Guestrin

The process of extracting useful knowledge from large datasets has become one of the most pressing problems in todays society. The problem spans entire sectors, from scientists to intelligence analysts and web users, all of whom are constantly struggling to keep up with the larger and larger amounts of content published every day. With this much data, it is often easy to miss the big picture. In this paper, we investigate methods for automatically connecting the dots -- providing a structured, easy way to navigate within a new topic and discover hidden connections. We focus on the news domain: given two news articles, our system automatically finds a coherent chain linking them together. For example, it can recover the chain of events starting with the decline of home prices (January 2007), and ending with the ongoing health-care debate. We formalize the characteristics of a good chain and provide an efficient algorithm (with theoretical guarantees) to connect two fixed endpoints. We incorporate user feedback into our framework, allowing the stories to be refined and personalized. Finally, we evaluate our algorithm over real news data. Our user studies demonstrate the algorithms effectiveness in helping users understanding the news.

Collaboration


Dive into the Carlos Guestrin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jonathan Huang

Carnegie Mellon University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yucheng Low

Carnegie Mellon University

View shared research outputs
Top Co-Authors

Avatar

Danny Bickson

Carnegie Mellon University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Dafna Shahaf

Hebrew University of Jerusalem

View shared research outputs
Top Co-Authors

Avatar

Sameer Singh

University of Washington

View shared research outputs
Top Co-Authors

Avatar

Aapo Kyrola

Carnegie Mellon University

View shared research outputs
Researchain Logo
Decentralizing Knowledge