Carlos Guillén
Complutense University of Madrid
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Carlos Guillén.
Autophagy | 2012
Alberto Bartolomé; Carlos Guillén; Manuel Benito
There is a growing evidence of the role of autophagy in pancreatic β cell homeostasis. During development of type 2 diabetes, β cells are required to supply the increased demand of insulin. In such a stage, β cells have to address high ER stress conditions that could lead to abnormal insulin secretion, and ultimately, β cell death and overt diabetes. In this study, we used insulin secretion-deficient β cells derived from fetal mice. These cells present an increased accumulation of polyubiquitinated protein aggregates and LC3B-positive puncta, when compared with insulinoma-derived β cell lines. We found that insulin secretion deficiency renders these cells hypersensitive to endoplasmic reticulum (ER) stress-mediated cell death. Chemical or shRNA-mediated inhibition of autophagy increased β cell death under ER stress. On the other hand, rapamycin treatment increased both autophagy and cell survival under ER stress. Insulin secretion-deficient β cells showed a marked reduction of the antiapoptotic protein BCL2, together with increased BAX expression and ERN1 hyperactivation upon ER stress induction. These results showed how insulin secretion deficiency in β cells may be contributing to ER stress-mediated cell death, and in this regard, we showed how the autophagic response plays a prosurvival role.
Endocrinology | 2001
Alvaro Valin; Carlos Guillén; Pedro Esbrit
Studies were undertaken to determine whether PTH-related protein (PTHrP) (107–139) mobilizes [Ca2+]i in osteoblastic osteosarcoma UMR 106 cells. PTHrP (107–139), in a manner similar to PTHrP (107–111), induced a rapid[ Ca2+]i response in these cells that was dose dependent (EC50 of ≈0.1 pm) and more efficient than that of PTHrP (1–36) (EC50 of ≈ 1 nm). This effect of PTHrP (107–139) was abrogated by micromolar doses of verapamil or nifedipine. However, it was unaffected by 10 μm U73122 (a phospholipase C inhibitor), 100μ g/ml heparin (an inositol 1,4,5-trisphosphate receptor inhibitor), or 400 ng/ml pertussis toxin (a Gi inhibitor), which inhibited the [Ca2+]i response to PTHrP (1–36), or by either 25 nm bisindolylmaleimide I (BIM), a protein kinase (PK) C inhibitor, or 1 μm phorbol-12-myristate-13-acetate preincubation (22 h). PTHrP (107–139) and PTHrP (1–36), at 100 nm, desensitized the[ Ca2+]i response to a second challenge with the same peptide, but not with the other peptide in these cells. PTHrP (7–...
Diabetes | 2009
Óscar Escribano; Carlos Guillén; Carmen Nevado; Almudena Gómez-Hernández; C. Ronald Kahn; Manuel Benito
OBJECTIVE Type 2 diabetes results from a combination of insulin resistance and impaired insulin secretion. To directly address the effects of hepatic insulin resistance in adult animals, we developed an inducible liver-specific insulin receptor knockout mouse (iLIRKO). RESEARCH DESIGN AND METHODS Using this approach, we were able to induce variable insulin receptor (IR) deficiency in a tissue-specific manner (liver mosaicism). RESULTS iLIRKO mice presented progressive hepatic and extrahepatic insulin resistance without liver dysfunction. Initially, iLIRKO mice displayed hyperinsulinemia and increased beta-cell mass, the extent of which was proportional to the deletion of hepatic IR. Our studies of iLIRKO suggest a cause-and-effect relationship between progressive insulin resistance and the fold increase of plasma insulin levels and beta-cell mass. Ultimately, the beta-cells failed to secrete sufficient insulin, leading to uncontrolled diabetes. We observed that hepatic IGF-1 expression was enhanced in iLIRKO mice, resulting in an increase of circulating IGF-1. Concurrently, the IR-A isoform was upregulated in hyperplastic beta-cells of iLIRKO mice and IGF-1-induced proliferation was higher than in the controls. In mouse beta-cell lines, IR-A, but not IR-B, conferred a proliferative capacity in response to insulin or IGF-1, providing a potential explanation for the beta-cell hyperplasia induced by liver insulin resistance in iLIRKO mice. CONCLUSIONS Our studies of iLIRKO mice suggest a liver-pancreas endocrine axis in which IGF-1 functions as a liver-derived growth factor to promote compensatory pancreatic islet hyperplasia through IR-A.OBJECTIVE Type 2 diabetes results from a combination of insulin resistance and impaired insulin secretion. To directly address the effects of hepatic insulin resistance in adult animals, we developed an inducible liver-specific insulin receptor knockout mouse (iLIRKO). RESEARCH DESIGN AND METHODS Using this approach, we were able to induce variable insulin receptor (IR) deficiency in a tissue-specific manner (liver mosaicism). RESULTS iLIRKO mice presented progressive hepatic and extrahepatic insulin resistance without liver dysfunction. Initially, iLIRKO mice displayed hyperinsulinemia and increased β-cell mass, the extent of which was proportional to the deletion of hepatic IR. Our studies of iLIRKO suggest a cause-and-effect relationship between progressive insulin resistance and the fold increase of plasma insulin levels and β-cell mass. Ultimately, the β-cells failed to secrete sufficient insulin, leading to uncontrolled diabetes. We observed that hepatic IGF-1 expression was enhanced in iLIRKO mice, resulting in an increase of circulating IGF-1. Concurrently, the IR-A isoform was upregulated in hyperplastic β-cells of iLIRKO mice and IGF-1–induced proliferation was higher than in the controls. In mouse β-cell lines, IR-A, but not IR-B, conferred a proliferative capacity in response to insulin or IGF-1, providing a potential explanation for the β-cell hyperplasia induced by liver insulin resistance in iLIRKO mice. CONCLUSIONS Our studies of iLIRKO mice suggest a liver-pancreas endocrine axis in which IGF-1 functions as a liver-derived growth factor to promote compensatory pancreatic islet hyperplasia through IR-A.
Journal of Biological Chemistry | 2002
Carlos Guillén; Pilar Martı́nez; Arancha R. Gortazar; M. E. Martínez; Pedro Esbrit
Parathyroid hormone (PTH)-related protein (PTHrP) seems to affect bone resorption by interaction with bone cytokines, among them interleukin-6 (IL-6). Recent studies suggest that nuclear factor (NF)-κB activation has an important role in bone resorption. We assessed whether the N-terminal fragment of PTHrP, and its C-terminal region, unrelated to PTH, can activate NF-κB, and its relationship with IL-6 gene induction in different rat and human osteoblastic cell preparations. Here we present molecular data demonstrating that both PTHrP (1–36) and PTHrP (107–139) activate NF-κB, leading to an increase in IL-6 mRNA, in these cells. Using anti-p65 and anti-p50 antibodies, we detected the presence of both proteins in the activated NF-κB complex. This effect induced by either the N- or C-terminal PTHrP domain in osteoblastic cells appears to occur by different intracellular mechanisms, involving protein kinase A or intracellular Ca2+/protein kinase C activation, respectively. However, the effect of each peptide alone did not increase further when added together. Our findings lend support to the hypothesis that the C-terminal domain of PTHrP, in a manner similar to its N-terminal fragment, might stimulate bone resorption. These studies also provide further insights into the putative role of PTHrP as a modulator of bone remodeling.
Diabetes | 2014
Alberto Bartolomé; Maki Kimura-Koyanagi; Shun-ichiro Asahara; Carlos Guillén; Hiroyuki Inoue; Kyoko Teruyama; Shinobu Shimizu; Ayumi Kanno; Ana García-Aguilar; Masato Koike; Yasuo Uchiyama; Manuel Benito; Tetsuo Noda; Yoshiaki Kido
Hyperactivation of the mammalian target of rapamycin complex 1 (mTORC1) in β-cells is usually found as a consequence of increased metabolic load. Although it plays an essential role in β-cell compensatory mechanisms, mTORC1 negatively regulates autophagy. Using a mouse model with β-cell–specific deletion of Tsc2 (βTsc2−/−) and, consequently, mTORC1 hyperactivation, we focused on the role that chronic mTORC1 hyperactivation might have on β-cell failure. mTORC1 hyperactivation drove an early increase in β-cell mass that later declined, triggering hyperglycemia. Apoptosis and endoplasmic reticulum stress markers were found in islets of older βTsc2−/− mice as well as accumulation of p62/SQSTM1 and an impaired autophagic response. Mitochondrial mass was increased in β-cells of βTsc2−/− mice, but mitophagy was also impaired under these circumstances. We provide evidence of β-cell autophagy impairment as a link between mTORC1 hyperactivation and mitochondrial dysfunction that probably contributes to β-cell failure.
Endocrinology | 2010
Alberto Bartolomé; Carlos Guillén; Manuel Benito
Tuberous sclerosis complex proteins 1-2 (TSC1-TSC2) complex integrates both nutrient and hormonal signaling and is a critical negative regulator of mammalian target of rapamycin (mTOR) complex 1. The use of different beta-cell lines expressing or not the insulin receptor (IR(+/+) and IR(-/-)) or with a reconstituted expression of IR isoform A or B (Rec A and Rec B) revealed that both phosphatidylinositol 3-kinase/Akt/TSC/mTOR complex 1 and MAPK kinase/ERK pathways mediate insulin signaling in IR(+/+)-, IRA-, or IRB-expressing cells. However, glucose signaling was mediated by MAPK kinase/ERK and AMP-activated protein kinase pathways as assessed in IR(-/-) cells. The effect of insulin on Akt phosphorylation was completely inhibited by the use of the phosphatidylinositol 3-kinase inhibitor wortmannin in IR(+/+) and Rec B cells, a partial inhibitory effect being observed in Rec A cell line. The knockdown of TSC2 expression up-regulated the downstream basal phosphorylation of 70-kDa ribosomal protein S6 kinase (p70S6K) and mTOR. More importantly, upregulation of p70S6K signaling impaired insulin-stimulated phosphorylation of Akt Ser(473) and p70S6K in IR(+/+) and Rec B but not in Rec A cell lines. In fact, insulin receptor substrate-1 Ser(307) phosphorylation signal in Rec B was stronger than in Rec A cell line during insulin action. Rec A cells induced a higher proliferation rate compared with Rec B or IR(+/+) during serum stimulation. Thus, we propose that the regulation of TSC2 phosphorylation by insulin or glucose independently integrates beta-cell proliferation signaling, the relative expression of IRA or IRB isoforms in pancreatic beta cells playing a major role.
Biochemical Journal | 2013
Alberto Bartolomé; Ana López-Herradón; Sergio Portal-Núñez; Ana García-Aguilar; Pedro Esbrit; Manuel Benito; Carlos Guillén
Autophagy is a highly regulated homoeostatic process involved in the lysosomal degradation of damaged cell organelles and proteins. This process is considered an important pro-survival mechanism under diverse stress conditions. A diabetic milieu is known to hamper osteoblast viability and function. In the present study, we explored the putative protective role of autophagy in osteoblastic cells exposed to an HG (high glucose) medium. HG was found to increase protein oxidation and triggered autophagy by a mechanism dependent on reactive oxygen species overproduction in osteoblastic MC3T3-E1 cells. MC3T3-E1 cell survival was impaired by HG and worsened by chemical or genetic inhibition of autophagy. These findings were mimicked by H2O2-induced oxidative stress in these cells. Autophagy impairment led to both defective mitochondrial morphology and decreased bioenergetic machinery and inhibited further osteoblast differentiation in MC3T3-E1 cells upon exposure to HG. These novel findings indicate that autophagy is an essential mechanism to maintain osteoblast viability and function in an HG environment.
Endocrinology | 2016
Vanesa Viana-Huete; Carlos Guillén; Ana García-Aguilar; Gema Álvarez García; Silvia Domínguez Fernández; C R Kahn; Manuel Benito
Brown fat is a thermogenic tissue that generates heat to maintain body temperature in cold environments and dissipate excess energy in response to overfeeding. We have addressed the role of the IGFIR in the brown fat development and function. Mice lacking IGFIR exhibited normal brown adipose tissue/body weight in knockout (KO) vs control mice. However, lack of IGFIR decreased uncoupling protein 1 expression in interscapular brown fat and beige cells in inguinal fat. More importantly, the lack of IGFIR resulted in an impaired cold acclimation. No differences in the total fat volume were found in the KO vs control mice. Epididymal fat showed larger adipocytes but with a lower number of adipocytes in KO vs control mice at age 12 months. In addition, KO mice showed a sustained moderate hyperinsulinemia and hypertriglyceridemia upon time and hepatic insulin insensitivity associated with lipid accumulation, with the outcome of a global insulin resistance. In addition, we found that the expression of uncoupling protein 3 in the skeletal muscle was decreased and its expression was increased in the heart in parallel with the expression of beta-2 adrenergic receptors. Upon nonobesogenic high-fat diet, we found a severe insulin resistance in the liver and in the skeletal muscle, but unchanged insulin sensitivity in the heart. In conclusion, our data suggest that IGFIR it is not an essential growth factor in the brown fat development in the presence of the IR and very high plasma levels of IGF-I, but it is indispensable for full brown fat functionality.
Biochimica et Biophysica Acta | 2016
Ana García-Aguilar; Carlos Guillén; Mark Nellist; Alberto Bartolomé; Manuel Benito
There is a growing evidence of the role of protein acetylation in different processes controlling metabolism. Sirtuins (histone deacetylases nicotinamide adenine dinucleotide-dependent) activate autophagy playing a protective role in cell homeostasis. This study analyzes tuberous sclerosis complex (TSC2) lysine acetylation, in the regulation of mTORC1 signaling activation, autophagy and cell proliferation. Nicotinamide 5mM (a concentration commonly used to inhibit SIRT1), increased TSC2 acetylation in its N-terminal domain, and concomitantly with an augment in its ubiquitination protein status, leading to mTORC1 activation and cell proliferation. In contrast, resveratrol (RESV), an activator of sirtuins deacetylation activity, avoided TSC2 acetylation, inhibiting mTORC1 signaling and promoting autophagy. Moreover, TSC2 in its deacetylated state was prevented from ubiquitination. Using MEF Sirt1 +/+ and Sirt1 -/- cells or a SIRT1 inhibitor (EX527) in MIN6 cells, TSC2 was hyperacetylated and neither NAM nor RESV were capable to modulate mTORC1 signaling. Then, silencing Tsc2 in MIN6 or in MEF Tsc2-/- cells, the effects of SIRT1 modulation by NAM or RESV on mTORC1 signaling were abolished. We also observed that two TSC2 lysine mutants in its N-terminal domain, derived from TSC patients, differentially modulate mTORC1 signaling. TSC2 K599M variant presented a lower mTORC1 activity. However, with K106Q mutant, there was an activation of mTORC1 signaling at the basal state as well as in response to NAM. This study provides, for the first time, a relationship between TSC2 lysine acetylation status and its stability, representing a novel mechanism for regulating mTORC1 pathway.
Journal of Cellular Biochemistry | 2013
Carlos Guillén; Alberto Bartolomé; Rocio Vila-Bedmar; Ana García-Aguilar; Almudena Gómez-Hernández; Manuel Benito
Brown adipose tissue (BAT) is specialized in non‐shivering thermogenesis through the expression of the mitochondrial uncoupling protein‐1 (UCP1). In this paper, we describe the relationship between UCP1 and proteins involved in ATP synthesis. By the use of BATIRKO mice, which have enhanced UCP1 expression in BAT, an increase in ATP synthase as well as in ubiquinol cytochrome c reductase levels was observed. Alterations in mitochondrial mass or variations in ATP levels were not observed in BAT of these mice. In addition, using a protocol of brown adipocyte differentiation, the concerted expression of UCP1 with ATP synthase was found. These two scenarios revealed that increases in the uncoupling machinery of brown adypocites must be concomitantly followed by an enhancement of proteins involved in ATP synthesis. These concerted changes reflect the need to maintain ATP production in an essentially uncoupling cell type. J. Cell. Biochem. 114: 2306–2313, 2013.