Carlos H. Grossi
Max Planck Society
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Carlos H. Grossi.
International Mathematics Research Notices | 2010
Sasha Anan'in; Carlos H. Grossi; Nikolay Gusevskii
We study complex hyperbolic disc bundles over closed orientable surfaces that arise from discrete and faithful representations H_n->PU(2,1), where H_n is the fundamental group of the orbifold S^2(2,...,2) and thus contains a surface group as a subgroup of index 2 or 4. The results obtained provide the first complex hyperbolic disc bundles M->{\Sigma} that: admit both real and complex hyperbolic structures; satisfy the equality 2(\chi+e)=3\tau; satisfy the inequality \chi/2 PU(2,1) with fractional Toledo invariant; where {\chi} is the Euler characteristic of \Sigma, e denotes the Euler number of M, and {\tau} stands for the Toledo invariant of M. To get a satisfactory explanation of the equality 2(\chi+e)=3\tau, we conjecture that there exists a holomorphic section in all our examples. In order to reduce the amount of calculations, we systematically explore coordinate-free methods.
arXiv: Differential Geometry | 2007
Sasha Anan'in; Carlos H. Grossi
arXiv: Geometric Topology | 2011
Sasha Anan'in; Carlos H. Grossi
Archive | 2007
Sasha Anan'in; Carlos H. Grossi
arXiv: Geometric Topology | 2018
Sasha Anan'in; Carlos H. Grossi; Jaejeong Lee; João dos Reis jr
arXiv: Differential Geometry | 2018
Omar Chavez Cussy; Carlos H. Grossi
arXiv: Geometric Topology | 2011
Sasha Anan'in; Carlos H. Grossi; Júlio C. C. da Silva
arXiv: Differential Geometry | 2011
Sasha Anan'in; Carlos H. Grossi
arXiv: Differential Geometry | 2009
Sasha Anan'in; Eduardo C. Bento Goncalves; Carlos H. Grossi
Archive | 2009
Sasha Anan'in; Carlos H. Grossi