Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carlos M. Correia is active.

Publication


Featured researches published by Carlos M. Correia.


Plant and Soil | 2007

Physiological behaviour, oxidative damage and antioxidative protection of olive trees grown under different irrigation regimes

E.A. Bacelar; D. Santos; José Moutinho-Pereira; João Lopes; Berta Gonçalves; Timóteo C. Ferreira; Carlos M. Correia

Irrigation effects were investigated on an 8-year-old olive (Olea europaea L., cv. Cobrançosa) commercial orchard located in northeast Portugal. Trees were subjected to a rainfed control (T0) and three treatments (T1, T2, T3) that received a seasonal water amount equivalent to 30%, 60% and 100% of the estimated local evaporative demand by a drip irrigation system. Irrigation increases the photosynthetic activity of olive trees, in association with increases in water status, and reduces the midday and afternoon depression in gas exchange. The closely association between photosynthetic rate (A) and stomatal conductance (gs) revealed that the decline in net photosynthesis over the course of the day was largely a consequence of stomatal limitation. However, the ratio of intercellular to atmospheric CO2 concentration increased markedly from morning to midday in non-irrigated plants, in spite of lower gs, suggesting that non-stomatal limitations of photosynthesis also occur when environmental conditions become more stressful. The occurrence of perturbations at chloroplastic level in rainfed plants was demonstrated by a lower maximum photochemical efficiency of photosystem II during the afternoon. Chlorophyll fluorescence measurements also revealed the occurrence of a dynamic photoinhibition in irrigated trees, mainly in T2 and T3, which seemed to be effective in protecting the photosynthetic apparatus from photodamage. Irrigation enhances antioxidant protection and decreases the oxidative damage at leaf level. Leaves grown under rainfed conditions revealed symptoms of oxidative stress, like the reduction (14%) in chlorophyll concentration and the increased levels (57%) of lipid peroxidation. We also found that the scavenging function of superoxide dismutase was impaired in rainfed plants. In contrast, the low thiobarbituric acid reactive substances concentration in T3 indicates that irrigation enhances the repairing mechanisms and decreases the oxidative damage by lipid peroxidation. Accordingly, leaves in T3 treatment had high levels of –SH compounds and the highest antioxidant potential. Meanwhile, the finding that guaiacol peroxidase activity increased in rainfed plants, associated with the appearance of oxidative damage, suggests that this enzyme has no major antioxidative function in olive.


Plant Physiology and Biochemistry | 2012

Chromium (VI) induces toxicity at different photosynthetic levels in pea

Eleazar Rodriguez; Conceição Santos; Raquel Azevedo; José Moutinho-Pereira; Carlos M. Correia; Maria Celeste Dias

In order to comprehensively characterize the effects of Cr (VI) on the photosynthetic performance of Pisum sativum, plants irrigated with Cr solutions (ranging from 20 to 2000 mg l(-1)) were evaluated using the following classical endpoints: gas exchange parameters, chlorophyll a (Chl a) fluorescence, leaf pigments, Rubisco activity, soluble sugars and starch content. Flow cytometry (FCM) was applied in an innovative approach to evaluate the morphological and fluorescence emission status of chloroplasts from plants exposed to Cr (VI). The parameters related to gas exchange, net CO(2) assimilation rate (A) and Rubisco activity were severally affected by Cr exposure, in some cases even at the lowest dosage used. While all biomarkers used to measure Chl a fluorescence indicated a decrease in fluorescence at the maximum dosage, pigment contents significantly increased in response to Cr (VI). The morphology of chloroplasts also was altered by Cr (VI) exposure, as a volume decrease was observed. Soluble sugars and starch showed an overall tendency to increase in Cr (VI) exposed plants, but sucrose and glucose decreased highly when exposed to 2000 mg l(-1). In conclusion, our results indicate that Cr (VI) affects photosynthesis at several levels, but the most Cr (VI)-sensitive endpoints were chloroplast morphology and biochemical processes; only at higher dosages the photochemical efficiency is compromised.


Photosynthetica | 2004

Leaf Gas Exchange and Water Relations of Grapevines Grown in Three Different Conditions

José Moutinho-Pereira; Carlos M. Correia; B. Gonçalves; E.A. Bacelar; J.M. Torres-Pereira

Diurnal and seasonal changes in the leaf water potential (Ψ), stomatal conductance (gs), net CO2 assimilation rate (PN), transpiration rate (E), internal CO2 concentration (Ci), and intrinsic water use efficiency (PN/gs) were studied in grapevines (Vitis vinifera L. cv. Touriga Nacional) growing in low, moderate, and severe summer stress at Vila Real (VR), Pinhão (PI), and Almendra (AL) experimental sites, respectively. In VR and PI site the limitation to photosynthesis was caused more by stomatal limitations, while in AL mesophyll limitations were also responsible for the summer decline in PN.


Journal of Agricultural and Food Chemistry | 2009

Effects of elevated CO2 on grapevine (Vitis vinifera L.): volatile composition, phenolic content, and in vitro antioxidant activity of red wine.

Berta Gonçalves; V. Falco; José Moutinho-Pereira; E.A. Bacelar; Francisco Peixoto; Carlos M. Correia

The impact of elevated carbon dioxide concentration ([CO2]) on the quality of berries, must, and red wine (with special reference to volatile composition, phenolic content, and antioxidant activity) made from Touriga Franca, a native grape variety of Vitis vinifera L. for Port and Douro wine manufacturing grown in the Demarcated Region of Douro, was investigated during 2005 and 2006. Grapevines were grown either in open-top chambers (OTC) with ambient (365 +/- 10 ppm) or elevated (500 +/-16 ppm) [CO2] or in an outside plot. In general, the increase of [CO2] did not affect berry characteristics, especially the total anthocyan and tannin concentrations. However, the total anthocyan and polyphenol concentrations of the red wine were inhibited under elevated [CO2]. The antioxidant capacity of the wines was determined by DPPH, ABTS, and TBARS assays and, despite the low concentrations of phenolics, the elevated [CO2] did not significantly change the total antioxidant capacity of the red wines. Thirty-five volatile compounds belonging to seven chemical groups were identified: C6 alcohols, higher alcohols, esters, terpenols, carbonyl compounds, acids, volatile phenols, and C13 norisoprenoids. Generally, the same volatile compounds were present in all of the wines, but the relative levels varied among the treatments. The effect of elevated [CO2] was significant because it was detected as an increase in ethyl 2-methylbutyrate, isoamyl acetate, ethyl hexanoate, ethyl octanoate, butyric acid, and isovaleric acid concentrations and a decrease in ethyl acetate concentration when compared to wines produced in ambient [CO2] in 2005. In elevated [CO2], wines from 2006 had lower methionol, 1-octanol, and 4-ethylguaiacol and higher ethyl lactate and linalool concentrations. The increase in [CO2] did not significantly affect C6 alcohols, citronellol, carbonyl compounds, and beta-damascenone concentrations. This study showed that the predicted rise in [CO2] did not produce negative effects on the quality of grapes and red wine. Although some of the compounds were slightly affected, the red wine quality remained almost unaffected.


European Journal of Agronomy | 2000

Ultraviolet-B radiation and nitrogen effects on growth and yield of maize under Mediterranean field conditions

Carlos M. Correia; João Coutinho; Lars Olof Björn; José M. G. Torres-Pereira

The effects of an increase in UV-B radiation on growth and yield of maize (Zea mays L.) were investigated at four levels of applied nitrogen (0, 100, 200 and 300 kg ha−1 of N) under Mediterranean field conditions. The experiment simulated a 20% stratospheric ozone depletion over Portugal. Enhanced UV-B and N deficiency decreased yield and total biomass production by 22–49%. High UV-B dose reduced yield, total biomass and growth of N-fertilized maize plants but did not affect N-stressed plants to the same extent. The response of grain yield to N was smaller with enhanced UV-B radiation. The underlying mechanisms for these results are discussed. This is the final, accepted and revised manuscript of this article. Use alternative location to go to the published article. Requires subscription. (Less)


Acta Physiologiae Plantarum | 2009

Physiological responses of different olive genotypes to drought conditions

E.A. Bacelar; José Moutinho-Pereira; Berta Gonçalves; João Lopes; Carlos M. Correia

Gas exchange rates, chlorophyll fluorescence, pressure–volume relationships, photosynthetic pigments, total soluble sugars, starch, soluble proteins and proline concentrations were investigated in five Olea europaea L. cultivars with different geographical origins (Arbequina, Blanqueta, Cobrançosa, Manzanilla and Negrinha) grown under Mediterranean field conditions. We found considerable genotypic differences among the cultivars. Comparing the diurnal gas exchange rates, we observed that Cobrançosa, Manzanilla and Negrinha had high photosynthetic rate than Arbequina and Blanqueta. The first group reveals to be better acclimated to drought conditions, and appears to employ a prodigal water-use strategy, whereas Blanqueta and Arbequina, with high water-use efficiency, appear to employ a conservative water-use strategy. The degree of midday depression in photosynthesis was genotype dependent, with a maximum in Arbequina and a minimum in Negrinha. The reductions in the photosynthetic rate were dependent from both stomatal and non-stomatal limitations. Elastic adjustment plays an important role as drought tolerance mechanism. The group of cultivars that employ a prodigal water-use strategy revealed high tissue elasticity, whereas Arbequina and Blanqueta revealed high tissue rigidity. We also identified the existence of drought tolerance mechanisms associated with soluble proteins accumulation in the foliage. The high levels of soluble proteins in Arbequina may represent an increased activity of oxidative stress defence enzymes and may also represent a reserve for post stress recovery. In all cultivars, especially in Manzanilla, free proline was accumulated in the foliage. The discussed aspects of drought stress metabolism may have an adaptative meaning, supporting the hypothesis that olive cultivars native to dry regions, such as Cobrançosa, Manzanilla and Negrinha, have more capability to acclimate to drought conditions than cultivars originated in regions with a more temperate climate, like Arbequina and Blanqueta.


Photosynthetica | 2007

Gas exchange and water relations of three Vitis vinifera L. cultivars growing under Mediterranean climate

José Moutinho-Pereira; N. Magalhães; B. Gonçalves; E.A. Bacelar; M. Brito; Carlos M. Correia

Optical characteristics, contents of photosynthetic pigments, total soluble sugars, and starch, rates of gas exchange, chlorophyll (Chl) a fluorescence, and leaf water relations were analysed in three Vitis vinifera L. cultivars, Tinto Cão (TC), Touriga Nacional (TN), and Tinta Roriz (TR), grown in Mediterranean climate. Chl content was significantly lower in TC than in TN and TR leaves, while the Chl a/b ratio was higher. TR had the lowest net photosynthetic rate, stomatal conductance, and contents of soluble sugars and starch than TN and TC. In spite of low Chl content, TC showed the lowest photon absorbance and the highest photochemical efficiency of photosystem 2. TC had the lowest predawn and midday leaf water potential. The capability for osmotic adjustment was similar among cultivars and the calculated modulus of elasticity was higher in TC leaves. The typical lighter green leaves of TC seemed to be an adaptive strategy to high irradiance and air temperature associated to water stress.


Biologia Plantarum | 2013

Photosynthetic parameters of Ulmus minor plantlets affected by irradiance during acclimatization

Maria Celeste Dias; Glória Pinto; Carlos M. Correia; José Moutinho-Pereira; Sónia Silva; Conceição Santos

In order to set up large-scale acclimatization protocols of micropropagated plants, an in-depth knowledge of their physiological responses during in vitro to ex vitro transfer is required. This work describes the photosynthetic performance of Ulmus minor micropropagated plants during acclimatization at high irradiance (HI; 200 ± 20 μmol m−2 s−1 or low irradiance (LI; 100 ± 20 μmol m−2 s−1). During this experiment, leaf pigment content, chlorophyll a fluorescence, gas exchange, stomata morphology, the activity of the Calvin cycle enzymes and saccharides were measured in persistent and new leaves. The results indicated that HI induces a higher photosynthetic performance compared to LI. Therefore, plants acclimatized under HI are likely to survive better after field transfer.


Communications in Soil Science and Plant Analysis | 2011

Olive Yields and Tree Nutritional Status during a Four-Year Period without Nitrogen and Boron Fertilization

M. Ângelo Rodrigues; Francisco Pavão; João Lopes; Vanessa Gomes; Margarida Arrobas; José Moutinho-Pereira; Sérgio Ruivo; J.E. Cabanas; Carlos M. Correia

Nitrogen (N) and boron (B) are mobile elements in soil. Therefore, the application of these nutrients is typically performed annually, as a single dose, or even split into several fractions in the case of N. In olive (Olea europaea L.), however, controversial literature has suggested that yearly application of N may not be required. In the case of B, some authors indicated that one single application is sufficient for 3 or 4 years. Thus, the effects of these elements on olive yield, leaf N and B concentrations, as well as soil available N and B were investigated during a field trial performed in an olive orchard located in northeast Portugal, in which N and B were not applied for four consecutive growing seasons. Fertilizer treatments consisted of the following: the control, which was a complete fertilization plan where N and B were included (N + B treatment); –N treatment, with N excluded from the fertilization plan; and –B treatment, with B excluded. Available soil N and B were estimated from a pot experiment with Italian ryegrass (Lolium multiflorum L.) and from chemical laboratory extractions. Olive yield decreased significantly in the –N treatment in comparison to the control. A slight yield reduction in the –B treatment in comparison to the control was also observed. Leaf N and B concentrations decreased significantly in the –N and –B treatments, respectively, in comparison to the N + B treatment. Soil available N and B at the end of the experiment were significantly lower in the –N and –B treatments, respectively, in comparison to the N + B control. The results showed a continuous decrease in olive yield and leaf N and B concentrations, which reflected the reduction in soil-available N and B in the treatments lacking the respective nutrient. Therefore, it seems prudent to recommend adjustments to the rates of N and B every year to prevent reduction in tree crop performance and improve nutrient-use efficiency.


The Scientific World Journal | 2012

Ultraviolet-B radiation and nitrogen affect nutrient concentrations and the amount of nutrients acquired by above-ground organs of maize

Carlos M. Correia; João Coutinho; E.A. Bacelar; B. Gonçalves; Lars Olof Björn; José Moutinho Pereira

UV-B radiation effects on nutrient concentrations in above-ground organs of maize were investigated at silking and maturity at different levels of applied nitrogen under field conditions. The experiment simulated a 20% stratospheric ozone depletion over Portugal. At silking, UV-B increased N, K, Ca, and Zn concentrations, whereas at maturity Ca, Mg, Zn, and Cu increased and N, P and Mn decreased in some plant organs. Generally, at maturity, N, Ca, Cu, and Mn were lower, while P, K, and Zn concentrations in stems and nitrogen-use efficiency (NUE) were higher in N-starved plants. UV-B and N effects on shoot dry biomass were more pronounced than on nutrient concentrations. Nutrient uptake decreased under high UV-B and increased with increasing N application, mainly at maturity harvest. Significant interactions UV-B x N were observed for NUE and for concentration and mass of some elements. For instance, under enhanced UV-B, N, Cu, Zn, and Mn concentrations decreased in leaves, except on N-stressed plants, whereas they were less affected by N nutrition. In order to minimize nutritional, economical, and environmental negative consequences, fertiliser recommendations based on element concentration or yield goals may need to be adjusted.

Collaboration


Dive into the Carlos M. Correia's collaboration.

Top Co-Authors

Avatar

José Moutinho-Pereira

University of Trás-os-Montes and Alto Douro

View shared research outputs
Top Co-Authors

Avatar

E.A. Bacelar

University of Trás-os-Montes and Alto Douro

View shared research outputs
Top Co-Authors

Avatar

Helena Ferreira

Federal University of Bahia

View shared research outputs
Top Co-Authors

Avatar

Margarida Arrobas

Instituto Politécnico Nacional

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

B. Gonçalves

University of Trás-os-Montes and Alto Douro

View shared research outputs
Top Co-Authors

Avatar

I.Q. Ferreira

Instituto Politécnico Nacional

View shared research outputs
Researchain Logo
Decentralizing Knowledge