Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carlos M. Figueroa is active.

Publication


Featured researches published by Carlos M. Figueroa.


Plant Journal | 2014

Trehalose metabolism in plants

John E. Lunn; Ines Delorge; Carlos M. Figueroa; Patrick Van Dijck; Mark Stitt

Trehalose is a quantitatively important compatible solute and stress protectant in many organisms, including green algae and primitive plants. These functions have largely been replaced by sucrose in vascular plants, and trehalose metabolism has taken on new roles. Trehalose is a potential signal metabolite in plant interactions with pathogenic or symbiotic micro-organisms and herbivorous insects. It is also implicated in responses to cold and salinity, and in regulation of stomatal conductance and water-use efficiency. In plants, as in other eukaryotes and many prokaryotes, trehalose is synthesized via a phosphorylated intermediate, trehalose 6-phosphate (Tre6P). A meta-analysis revealed that the levels of Tre6P change in parallel with sucrose, which is the major product of photosynthesis and the main transport sugar in plants. We propose the existence of a bi-directional network, in which Tre6P is a signal of sucrose availability and acts to maintain sucrose concentrations within an appropriate range. Tre6P influences the relative amounts of sucrose and starch that accumulate in leaves during the day, and regulates the rate of starch degradation at night to match the demand for sucrose. Mutants in Tre6P metabolism have highly pleiotropic phenotypes, showing defects in embryogenesis, leaf growth, flowering, inflorescence branching and seed set. It has been proposed that Tre6P influences plant growth and development via inhibition of the SNF1-related protein kinase (SnRK1). However, current models conflict with some experimental data, and do not completely explain the pleiotropic phenotypes exhibited by mutants in Tre6P metabolism. Additional explanations for the diverse effects of alterations in Tre6P metabolism are discussed.


Plant Physiology | 2013

Feedback Inhibition of Starch Degradation in Arabidopsis Leaves Mediated by Trehalose 6-Phosphate

Marina Camara Mattos Martins; Mahdi Hejazi; Joerg Fettke; Martin Steup; Regina Feil; Ursula Krause; Stéphanie Arrivault; Daniel Vosloh; Carlos M. Figueroa; Alexander Ivakov; Umesh Prasad Yadav; Maria Piques; Daniela Metzner; Mark Stitt; John E. Lunn

Trehalose 6-phosphate inhibits the nighttime breakdown of transitory starch in leaves, potentially linking starch remobilization to sucrose demand for respiration and growth at night. Many plants accumulate substantial starch reserves in their leaves during the day and remobilize them at night to provide carbon and energy for maintenance and growth. In this paper, we explore the role of a sugar-signaling metabolite, trehalose-6-phosphate (Tre6P), in regulating the accumulation and turnover of transitory starch in Arabidopsis (Arabidopsis thaliana) leaves. Ethanol-induced overexpression of trehalose-phosphate synthase during the day increased Tre6P levels up to 11-fold. There was a transient increase in the rate of starch accumulation in the middle of the day, but this was not linked to reductive activation of ADP-glucose pyrophosphorylase. A 2- to 3-fold increase in Tre6P during the night led to significant inhibition of starch degradation. Maltose and maltotriose did not accumulate, suggesting that Tre6P affects an early step in the pathway of starch degradation in the chloroplasts. Starch granules isolated from induced plants had a higher orthophosphate content than granules from noninduced control plants, consistent either with disruption of the phosphorylation-dephosphorylation cycle that is essential for efficient starch breakdown or with inhibition of starch hydrolysis by β-amylase. Nonaqueous fractionation of leaves showed that Tre6P is predominantly located in the cytosol, with estimated in vivo Tre6P concentrations of 4 to 7 µm in the cytosol, 0.2 to 0.5 µm in the chloroplasts, and 0.05 µm in the vacuole. It is proposed that Tre6P is a component in a signaling pathway that mediates the feedback regulation of starch breakdown by sucrose, potentially linking starch turnover to demand for sucrose by growing sink organs at night.


Plant Physiology | 2016

A Tale of Two Sugars: Trehalose 6-Phosphate and Sucrose

Carlos M. Figueroa; John E. Lunn

Trehalose 6-phosphate is a signal of sucrose availability in plants that influences sucrose synthesis in source leaves and the fate of imported sucrose in sink organs, thereby linking growth and development to carbon status. Trehalose 6-phosphate (Tre6P), the intermediate of trehalose biosynthesis, is an essential signal metabolite in plants, linking growth and development to carbon status. The Suc-Tre6P nexus model postulates that Tre6P is both a signal and negative feedback regulator of Suc levels, forming part of a mechanism to maintain Suc levels within an optimal range and functionally comparable to the insulin-glucagon system for regulating blood Glc levels in animals. The target range and sensitivity of the Tre6P-Suc feedback control circuit can be adjusted according to the cell type, developmental stage, and environmental conditions. In source leaves, Tre6P modulates Suc levels by affecting Suc synthesis, whereas in sink organs it regulates Suc consumption. In illuminated leaves, Tre6P influences the partitioning of photoassimilates between Suc, organic acids, and amino acids via posttranslational regulation of phosphoenolpyruvate carboxylase and nitrate reductase. At night, Tre6P regulates the remobilization of leaf starch reserves to Suc, potentially linking starch turnover in source leaves to carbon demand from developing sink organs. Use of Suc for growth in developing tissues is strongly influenced by the antagonistic activities of two protein kinases: SUC-NON-FERMENTING-1-RELATED KINASE1 (SnRK1) and TARGET OF RAPAMYCIN (TOR). The relationship between Tre6P and SnRK1 in developing tissues is complex and not yet fully resolved, involving both direct and indirect mechanisms, and positive and negative effects. No direct connection between Tre6P and TOR has yet been described. The roles of Tre6P in abiotic stress tolerance and stomatal regulation are also discussed.


Plant Journal | 2016

Trehalose 6-phosphate coordinates organic and amino acid metabolism with carbon availability

Carlos M. Figueroa; Regina Feil; Hirofumi Ishihara; Mutsumi Watanabe; Katharina Kölling; Ursula Krause; Melanie Höhne; Beatrice Encke; William C. Plaxton; Samuel C. Zeeman; Zhi Li; Waltraud X. Schulze; Rainer Hoefgen; Mark Stitt; John E. Lunn

Trehalose 6-phosphate (Tre6P) is an essential signal metabolite in plants, linking growth and development to carbon metabolism. The sucrose-Tre6P nexus model postulates that Tre6P acts as both a signal and negative feedback regulator of sucrose levels. To test this model, short-term metabolic responses to induced increases in Tre6P levels were investigated in Arabidopsis thaliana plants expressing the Escherichia coli Tre6P synthase gene (otsA) under the control of an ethanol-inducible promoter. Increased Tre6P levels led to a transient decrease in sucrose content, post-translational activation of nitrate reductase and phosphoenolpyruvate carboxylase, and increased levels of organic and amino acids. Radio-isotope ((14)CO2) and stable isotope ((13)CO2) labelling experiments showed no change in the rates of photoassimilate export in plants with elevated Tre6P, but increased labelling of organic acids. We conclude that high Tre6P levels decrease sucrose levels by stimulating nitrate assimilation and anaplerotic synthesis of organic acids, thereby diverting photoassimilates away from sucrose to generate carbon skeletons and fixed nitrogen for amino acid synthesis. These results are consistent with the sucrose-Tre6P nexus model, and implicate Tre6P in coordinating carbon and nitrogen metabolism in plants.


Journal of Bacteriology | 2007

Identification of Regions Critically Affecting Kinetics and Allosteric Regulation of the Escherichia coli ADP-Glucose Pyrophosphorylase by Modeling and Pentapeptide-Scanning Mutagenesis

Miguel A. Ballicora; Esteban D. Erben; Terutaka Yazaki; Ana L. Bertolo; Ana M. Demonte; Jennifer R. Schmidt; Mabel Aleanzi; Clarisa M. Bejar; Carlos M. Figueroa; Corina M. Fusari; Alberto A. Iglesias; Jack Preiss

ADP-glucose pyrophosphorylase (ADP-Glc PPase) is the enzyme responsible for the regulation of bacterial glycogen synthesis. To perform a structure-function relationship study of the Escherichia coli ADP-Glc PPase enzyme, we studied the effects of pentapeptide insertions at different positions in the enzyme and analyzed the results with a homology model. We randomly inserted 15 bp in a plasmid with the ADP-Glc PPase gene. We obtained 140 modified plasmids with single insertions of which 21 were in the coding region of the enzyme. Fourteen of them generated insertions of five amino acids, whereas the other seven created a stop codon and produced truncations. Correlation of ADP-Glc PPase activity to these modifications validated the enzyme model. Six of the insertions and one truncation produced enzymes with sufficient activity for the E. coli cells to synthesize glycogen and stain in the presence of iodine vapor. These were in regions away from the substrate site, whereas the mutants that did not stain had alterations in critical areas of the protein. The enzyme with a pentapeptide insertion between Leu(102) and Pro(103) was catalytically competent but insensitive to activation. We postulate this region as critical for the allosteric regulation of the enzyme, participating in the communication between the catalytic and regulatory domains.


Plant Physiology | 2016

Relationships of Leaf Net Photosynthesis, Stomatal Conductance, and Mesophyll Conductance to Primary Metabolism: A Multispecies Meta-Analysis Approach

Jorge Gago; Danilo M. Daloso; Carlos M. Figueroa; Jaume Flexas; Alisdair R. Fernie; Zoran Nikoloski

Multispecies meta-analysis of metabolic profiles reveals conserved and species-specific relationships between metabolism, leaf conductances, and net photosynthesis. Plant metabolism drives plant development and plant-environment responses, and data readouts from this cellular level could provide insights in the underlying molecular processes. Existing studies have already related key in vivo leaf gas-exchange parameters with structural traits and nutrient components across multiple species. However, insights in the relationships of leaf gas-exchange with leaf primary metabolism are still limited. We investigated these relationships through a multispecies meta-analysis approach based on data sets from 17 published studies describing net photosynthesis (A) and stomatal (gs) and mesophyll (gm) conductances, alongside the 53 data profiles from primary metabolism of 14 species grown in different experiments. Modeling results highlighted the conserved patterns between the different species. Consideration of species-specific effects increased the explanatory power of the models for some metabolites, including Glc-6-P, Fru-6-P, malate, fumarate, Xyl, and ribose. Significant relationships of A with sugars and phosphorylated intermediates were observed. While gs was related to sugars, organic acids, myo-inositol, and shikimate, gm showed a more complex pattern in comparison to the two other traits. Some metabolites, such as malate and Man, appeared in the models for both conductances, suggesting a metabolic coregulation between gs and gm. The resulting statistical models provide the first hints for coregulation patterns involving primary metabolism plus leaf water and carbon balances that are conserved across plant species, as well as species-specific trends that can be used to determine new biotechnological targets for crop improvement.


Biochemical Journal | 2015

Trehalose-6-phosphate synthase 1 is not the only active TPS in Arabidopsis thaliana

Ines Delorge; Carlos M. Figueroa; Regina Feil; John E. Lunn; Patrick Van Dijck

Trehalose metabolism is essential for normal growth and development in higher plants. It is synthesized in a two-step pathway catalysed by TPS (trehalose-6-phosphate synthase) and trehalose phosphatase. Arabidopsis thaliana has 11 TPS or TPS-like proteins, which belong to two distinct clades: class I (AtTPS1-AtTPS4) and class II (AtTPS5-AtTPS11). Only AtTPS1 has previously been shown to have TPS activity. A. thaliana tps1∆ mutants fail to complete embryogenesis and rescued lines have stunted growth and delayed flowering, indicating that AtTPS1 is important throughout the life cycle. In the present study, we show that expression of AtTPS2 or AtTPS4 enables the yeast tps1∆ tps2∆ mutant to grow on glucose and accumulate Tre6P (trehalose 6-phosphate) and trehalose. Class II TPS genes did not complement the yeast mutant. Thus A. thaliana has at least three catalytically active TPS isoforms, suggesting that loss of Tre6P production might not be the only reason for the growth defects of A. thaliana tps1 mutants.


FEBS Letters | 2013

The unique nucleotide specificity of the sucrose synthase from Thermosynechococcus elongatus

Carlos M. Figueroa; Matías Damián Asención Diez; Misty L. Kuhn; Sheila McEwen; Graciela L. Salerno; Alberto A. Iglesias; Miguel A. Ballicora

Sucrose synthase catalyzes the reversible conversion of sucrose and UDP into fructose and UDP‐glucose. In filamentous cyanobacteria, the sucrose cleavage direction plays a key physiological function in carbon metabolism, nitrogen fixation, and stress tolerance. In unicellular strains, the function of sucrose synthase has not been elucidated. We report a detailed biochemical characterization of sucrose synthase from Thermosynechococcus elongatus after the gene was artificially synthesized for optimal expression in Escherichia coli. The homogeneous recombinant sucrose synthase was highly specific for ADP as substrate, constituting the first one with this unique characteristic, and strongly suggesting an interaction between sucrose and glycogen metabolism.


Plant Science | 2010

Cloning, expression, purification and physical and kinetic characterization of the phosphoenolpyruvate carboxylase from orange (Citrus sinensis osbeck var. Valencia) fruit juice sacs.

Valeria E. Perotti; Carlos M. Figueroa; Carlos S. Andreo; Alberto A. Iglesias; Florencio E. Podestá

Phosphoenolpyruvate (PEP) carboxylase (PEPCase) from orange fruit juice sacs has been cloned and heterogously expressed in high yield. The purified recombinant enzyme displays properties typical of plant PEPCase, including activation by sugar phosphates and inhibition by malate and citrate. Malate inhibition is weak in the physiological pH range, and the enzyme is also poorly affected by Glu and Asp, known inhibitors of C(3) plants PEPCases. However, it is strongly inhibited by citrate. Orange fruit PEPCase phosphorylation by mammalian protein kinase A decreased inhibition by malate. The enzyme presents an unusual high molecular mass in the absence of PEP, while in its presence it displays a more common tetrameric arrangement. The overall properties of the enzyme suggest that it is suited for organic acid synthesis and NADH reoxidation in the mature fruit. The present study provides the first analysis of a recombinant fruit PEPCase.


Biochimie | 2010

Aldose-6-phosphate reductase from apple leaves: Importance of the quaternary structure for enzyme activity

Carlos M. Figueroa; Alberto A. Iglesias

Aldose-6-phosphate reductase (A6PRase) is a key enzyme for glucitol biosynthesis in plants from the Rosaceae family. To gain on molecular tools for enzymological studies, we developed an accurate system for the heterologous expression of A6PRase from apple leaves. The recombinant enzyme was expressed with a His-tag alternatively placed in the N- or C-terminus, thus allowing the one-step protein purification by immobilized metal affinity chromatography. Both, the N- and the C-term tagged enzymes exhibited similar affinity toward substrates, although the k(cat) of the latter enzyme was 80-fold lower than that having the His-tag in the N-term. Gel filtration chromatography showed different oligomeric structures arranged by the N- (dimer) and the C-term (monomer) tagged enzymes. These results, reinforced by homology modeling studies, point out the relevance of the C-term domain in the structure of A6PRase to conform an enzyme having optimal specific activity and the proper quaternary structure.

Collaboration


Dive into the Carlos M. Figueroa's collaboration.

Top Co-Authors

Avatar

Alberto A. Iglesias

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Claudia V. Piattoni

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Mabel Aleanzi

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Valeria E. Perotti

National Scientific and Technical Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ana M. Demonte

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge