Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carlos M. Lopez-Vazquez is active.

Publication


Featured researches published by Carlos M. Lopez-Vazquez.


Water Research | 2009

Modeling the PAO–GAO competition: Effects of carbon source, pH and temperature

Carlos M. Lopez-Vazquez; Adrian Oehmen; Christine M. Hooijmans; Damir Brdjanovic; Huub J. Gijzen; Zhiguo Yuan; Mark C.M. van Loosdrecht

The influence of different carbon sources (acetate to propionate ratios), temperature and pH levels on the competition between polyphosphate- and glycogen-accumulating organisms (PAO and GAO, respectively) was evaluated using a metabolic model that incorporated the carbon source, temperature and pH dependences of these microorganisms. The model satisfactorily described the bacterial activity of PAO (Accumulibacter) and GAO (Competibacter and Alphaproteobacteria-GAO) laboratory-enriched cultures cultivated on propionate (HPr) and acetate (HAc) at standard conditions (20 degrees C and pH 7.0). Using the calibrated model, the effects of different influent HAc to HPr ratios (100-0, 75-25, 50-50 and 0-100%), temperatures (10, 20 and 30 degrees C) and pH levels (6.0, 7.0 and 7.5) on the competition among Accumulibacter, Competibacter and Alphaproteobacteria-GAO were evaluated. The main aim was to assess which conditions were favorable for the existence of PAO and, therefore, beneficial for the biological phosphorus removal process in sewage treatment plants. At low temperature (10 degrees C), PAO were the dominant microorganisms regardless of the used influent carbon source or pH. At moderate temperature (20 degrees C), PAO dominated the competition when HAc and HPr were simultaneously supplied (75-25 and 50-50% HAc to HPr ratios). However, the use of either HAc or HPr as sole carbon source at 20 degrees C was not favorable for PAO unless a high pH was used (7.5). Meanwhile, at higher temperature (30 degrees C), GAO tended to be the dominant microorganisms. Nevertheless, the combined presence of acetate and propionate in the influent (75-25 and 50-50% HAc to HPr ratios) as well as a high pH (7.5) appear to be potential factors to favor the metabolism of PAO over GAO at higher sewage temperature (30 degrees C).


Water Research | 2008

Factors affecting the microbial populations at full-scale enhanced biological phosphorus removal (EBPR) wastewater treatment plants in The Netherlands

Carlos M. Lopez-Vazquez; Christine M. Hooijmans; Damir Brdjanovic; Huub J. Gijzen; Mark C.M. van Loosdrecht

The influence of operating and environmental conditions on the microbial populations of the enhanced biological phosphorus removal (EBPR) process at seven full-scale municipal activated sludge wastewater treatment plants (WWTPs) in The Netherlands was studied. Data from the selected WWTPs concerning process configuration, operating and environmental conditions were compiled. The EBPR activity from each plant was determined by execution of anaerobic-anoxic-aerobic batch tests using fresh activated sludge. Fractions of Accumulibacter as potential phosphorus accumulating organisms (PAO), and Competibacter, Defluviicoccus-related microorganisms and Sphingomonas as potential glycogen accumulating organisms (GAO) were quantified using fluorescence in situ hybridization (FISH). The relationships among plant process configurations, operating parameters, environmental conditions, EBPR activity and microbial populations fractions were evaluated using a statistical approach. A well-defined and operated denitrification stage and a higher mixed liquor pH value in the anaerobic stage were positively correlated with the occurrence of Accumulibacter. A well-defined denitrification stage also stimulated the development of denitrifying PAO (DPAO). A positive correlation was observed between Competibacter fractions and organic matter concentrations in the influent. Nevertheless, Competibacter did not cause a major effect on the EBPR performance. The observed Competibacter fractions were not in the range that would have led to EBPR deterioration. Likely, the low average sewerage temperature (12+/-2 degrees C) limited their proliferation. Defluviicoccus-related microorganisms were seen only in negligible fractions in a few plants (<0.1% as EUB), whereas Sphingomonas were not observed.


Water Research | 2010

Modelling the population dynamics and metabolic diversity of organisms relevant in anaerobic/anoxic/aerobic enhanced biological phosphorus removal processes

Adrian Oehmen; Carlos M. Lopez-Vazquez; Gilda Carvalho; Maria A.M. Reis; M.C.M. van Loosdrecht

In this study, enhanced biological phosphorus removal (EBPR) metabolic models are expanded in order to incorporate the competition between polyphosphate accumulating organisms (PAOs) and glycogen accumulating organisms (GAOs) under sequential anaerobic/anoxic/aerobic conditions, which are representative of most full-scale EBPR plants. Since PAOs and GAOs display different denitrification tendencies, which is dependent on the phylogenetic identity of the organism, the model was separated into six distinct biomass groups, constituting Accumulibacter Types I and II, as well as denitrifying and non-denitrifying Competibacter and Defluviicoccus GAOs. Denitrification was modelled as a multi-step process, with nitrate (NO(3)), nitrite (NO(2)), nitrous oxide (N(2)O) and di-nitrogen gas (N(2)) being the primary components. The model was calibrated and validated using literature data from enriched cultures of PAOs and GAOs, obtaining a good description of the observed biochemical transformations. A strong correlation was observed between Accumulibacter Types I and II, and nitrate-reducing and non-nitrate-reducing PAOs, respectively, where the abundance of each PAO subgroup was well predicted by the model during an acclimatization period from anaerobic-aerobic to anaerobic-anoxic conditions. Interestingly, a strong interdependency was observed between the anaerobic, anoxic and aerobic kinetic parameters of PAOs and GAOs. This could be exploited when metabolic models are calibrated, since all of these parameters should be changed by an identical factor from their default value. Factors that influence these kinetic parameters include the fraction of active biomass, relative aerobic/anoxic fraction and the ratio of acetyl-CoA to propionyl-CoA. Employing a metabolic approach was found to be advantageous in describing the performance and population dynamics in such complex microbial ecosystems.


Water intelligence online | 2016

Experimental Methods in Wastewater Treatment

Mark C.M. van Loosdrecht; Per Halkjær Nielsen; Carlos M. Lopez-Vazquez; Damir Brdjanovic

Over the past twenty years, the knowledge and understanding of wastewater treatment has advanced extensively and moved away from empirically-based approaches to a fundamentally-based first-principles approach embracing chemistry, microbiology, and physical and bioprocess engineering, often involving experimental laboratory work and techniques. Many of these experimental methods and techniques have matured to the degree that they have been accepted as reliable tools in wastewater treatment research and practice. For sector professionals, especially the new generation of young scientists and engineers entering the wastewater treatment profession, the quantity, complexity and diversity of these new developments can be overwhelming, particularly in developing countries where access to advanced level laboratory courses in wastewater treatment is not readily available. In addition, information on innovative experimental methods is scattered across scientific literature and only partially available in the form of textbooks or guidelines. This book seeks to address these deficiencies. It assembles and integrates the innovative experimental methods developed by research groups and practitioners around the world and broadly applied in wastewater treatment research and practice. Experimental Methods in Wastewater Treatment book forms part of the internet-based curriculum in sanitary engineering at UNESCO-IHE and, as such, may also be used together with video recordings of methods and approaches performed and narrated by the authors, including guidelines on best experimental practices. The book is written for undergraduate and postgraduate students, researchers, laboratory staff, plant operators, consultants, and other sector professionals. ISBN: 9781780404752 (eBook) ISBN: 9781780404745 (Print)


Chemosphere | 2013

Occurrence of PAOI in a low temperature EBPR system

Wen-De Tian; Carlos M. Lopez-Vazquez; Wei-Guang Li; D. Brdjanovic; M.C.M. van Loosdrecht

The occurrence of Accumulibacter Type I (a known phosphorus-accumulating organism, PAO) has received increased attention due to the potential operating benefits associated with their denitrifying activity in enhanced biological phosphorus removal (EBPR) wastewater treatment plants. In this study, after a shift from an enriched glycogen-accumulating organism (GAO) culture (competitors of PAO) to a PAO-enriched system, Accumulibacter Type I (PAO I) became dominant in an anaerobic-aerobic EBPR system fed with acetate and operated at 10°C with a net aerobic solids retention time (SRT) of 6 d. Since Accumulibacter Type II (PAO II) were not detected, the low temperature in combination with the net aerobic SRT applied appeared to have suppressed their growth as well. The stoichiometry of PAO I was in agreement with previous metabolic models, suggesting that it was the main PAO organisms present in previous studies operated under similar conditions. Moreover, under poly-P limiting conditions, PAO I were unable to switch to a GAO-like metabolism at low temperatures. These results contribute to increase the understanding of the physiology, microbial metabolism and microbial ecology of PAO I.


Water Research | 2016

Denitrification of nitrate and nitrite by ‘Candidatus Accumulibacter phosphatis’ clade IC

Sondos A. Saad; L. Welles; Ben Abbas; Carlos M. Lopez-Vazquez; Mark C.M. van Loosdrecht; D. Brdjanovic

Phosphate accumulating organisms (PAO) are assumed to use nitrate as external electron acceptor, allowing an efficient integration of simultaneous nitrogen and phosphate removal with minimal organic carbon (COD) requirements. However, contradicting findings appear in literature regarding the denitrification capacities of PAO due to the lack of clade specific highly enriched PAO cultures. Whereas some studies suggest that only PAO clade I may be capable of using nitrate as external electron acceptor for anoxic P-uptake, other studies indicate that PAO clade II may be responsible for anoxic P-removal. In the present study, a highly enriched PAO clade IC culture (>99% according to FISH) was cultivated in an SBR operated under Anaerobic/Oxic conditions and subsequently exposed to Anaerobic/Anoxic/Oxic conditions using nitrate as electron acceptor. Before and after acclimatization to the presence of nitrate, the aerobic and anoxic (nitrate and nitrite) activities of the PAO I culture were assessed through the execution of batch tests using either acetate or propionate as electron donor. In the presence of nitrate, significant P-uptake by PAO I was not observed before or after acclimatization. Using nitrite as electron acceptor, limited nitrite removal rates were observed before acclimatization with lower rates in the acetate fed reactor without P-uptake and slightly higher in the propionate fed reactor with a marginal anoxic P-uptake. Only after acclimatization to nitrate, simultaneous P and nitrite removal was observed. This study suggests that PAO clade IC is not capable of using nitrate as external electron acceptor for anoxic P-removal. The elucidation of the metabolic capacities for individual PAO clades helps in better understanding and optimization of the relation between microbial ecology and process performance in enhanced biological phosphate removal processes.


Water Science and Technology | 2015

A new photo-activated sludge system for nitrification by an algal-bacterial consortium in a photo-bioreactor with biomass recycle

Peter van der Steen; Kuntarini Rahsilawati; Angélica M. Rada-Ariza; Carlos M. Lopez-Vazquez; Piet N.L. Lens

Wastewater treatment technologies requiring large areas may be less feasible in urbanizing regions of developing countries. Therefore, a new technology, named photo-activated sludge (PAS), was investigated to combine the advantages of regular activated sludge systems with those of algae ponds for the removal of ammonium. The PAS consisted of a mixed photo-bioreactor, continuously fed with BG-11 medium, adjusted to 66 mgN-NH4⁺/l. The reactor volume was 2 l, hydraulic retention time was 24 hours, with a depth of 8 cm, and continuous illumination at the water surface was 66 μmol PAR/m²/s (photosynthetically active radiation). Reactor effluent passed through a settler and settled biomass was returned to the reactor. A well settling biomass developed, that contained both algae and nitrifiers. Effluent contained 10 mgN-NH4⁺/L and 51 mgN-NOx⁻/L. Using a simplified model, the specific algae growth rate was estimated at about 0.62 day⁻¹, which was within the expected range. For nitrifiers (ammonia oxidizers), the specific growth rate was 0.11 day⁻¹, which was lower than reported for regular activated sludge. The in-situ photo-oxygenation process by algae contributed 82% of the oxygen input, whereas oxygen diffusion through the mixed surface provided the remaining 18%. The foreseen energy savings that a PAS system could achieve warrant further investigations with real wastewater.


Water intelligence online | 2015

Applications of Activated Sludge Models

Damir Brdjanovic; Sebastiaan C. F. Meijer; Carlos M. Lopez-Vazquez; Christine M. Hooijmans; Mark C.M. van Loosdrecht

In 1982 the International Association on Water Pollution Research and Control (IAWPRC), as it was then called, established a Task Group on Mathematical Modelling for Design and Operation of Activated Sludge Processes. The aim of the Task Group was to create a common platform that could be used for the future development of models for COD and N removal with a minimum of complexity. As the collaborative result of the work of several modelling groups, the Activated Sludge Model No. 1 (ASM1) was published in 1987, exactly 25 years ago. The ASM1 can be considered as the reference model, since this model triggered the general acceptance of wastewater treatment modelling, first in the research community and later on also in practice. ASM1 has become a reference for many scientific and practical projects, and has been implemented (in some cases with modifications) in most of the commercial software available for modelling and simulation of plants for N removal. The models have grown more complex over the years, from ASM1, including N removal processes, to ASM2 (and its variations) including P removal processes, and ASM3 that corrects the deficiencies of ASM1 and is based on a metabolic approach to modelling. So far, ASM1 is the most widely applied. Applications of Activated Sludge Models has been prepared in celebration of 25 years of ASM1 and in tribute to the activated sludge modelling pioneer, the late Professor G.v.R. Marrais. It consists of a dozen of practical applications for ASM models to model development, plant optimization, extension, upgrade, retrofit and troubleshooting, carried out by the members of the Delft modelling group over the last two decades. ISBN: 9781780404660 (eBook) ISBN: 9781780404639 (Print)


Water Science and Technology | 2017

Sludge reduction via biodegradation of the endogenous residue (XE): experimental verification and modeling

Cheikh Fall; Ericka Millan-Lagunas; Carlos M. Lopez-Vazquez; Christine M. Hooijmans; Yves Comeau

The feasibility of sludge reduction via the XE biodegradation process was explored both experimentally and through modeling, where the main focus was on determining the value of the bE parameter (first order degradation of XE) from a continuous process. Two activated sludge (AS) systems (30 L) were operated in parallel with synthetic wastewater during 16 months: a conventional activated sludge (CAS) system and a modified low-sludge production activated sludge (LSP-AS) process equipped with a side-stream digester unit (DU). First, the long term data of the CAS reactor (1 year) were used to calibrate the ASM model and to estimate the heterotrophic decay constant of the cultivated sludge (bH = 0.29 d-1, death-regeneration basis). Second, pre-simulations were performed to design the LSP-AS system and to estimate the DU volume required (40 L), to avoid XE accumulation in the process. Third, the LSP-AS process was built, put in operation and monitored for more than 9 months. This allowed assessment of the actual behavior of the quasi-complete solids retention system. Once calibrated, the modified AS model estimated the value of the bE parameter to be in the range of 0.003-0.006 d-1, satisfactorily describing the overall sludge yield reduction of up to 49% observed in the experiments.


Frontiers in Microbiology | 2017

Metabolic Response of “Candidatus Accumulibacter Phosphatis” Clade II C to Changes in Influent P/C Ratio

L. Welles; Ben Abbas; Dimitry Y. Sorokin; Carlos M. Lopez-Vazquez; Christine M. Hooijmans; Mark C.M. van Loosdrecht; D. Brdjanovic

The objective of this study was to investigate the ability of a culture highly enriched with the polyphosphate-accumulating organism, “Candidatus Accumulibacter phosphatis” clade IIC, to adjust their metabolism to different phosphate availabilities. For this purpose the biomass was cultivated in a sequencing batch reactor with acetate and exposed to different phosphate/carbon influent ratios during six experimental phases. Activity tests were conducted to determine the anaerobic kinetic and stoichiometric parameters as well as the composition of the microbial community. Increasing influent phosphate concentrations led to increased poly-phosphate content and decreased glycogen content of the biomass. In response to higher biomass poly-phosphate content, the biomass showed higher specific phosphate release rates. Together with the phosphate release rates, acetate uptake rates also increased up to an optimal poly-phosphate/glycogen ratio of 0.3 P-mol/C-mol. At higher poly-phosphate/glycogen ratios (obtained at influent P/C ratios above 0.051 P-mol/C-mol), the acetate uptake rates started to decrease. The stoichiometry of the anaerobic conversions clearly demonstrated a metabolic shift from a glycogen dominated to a poly-phosphate dominated metabolism as the biomass poly-phosphate content increased. FISH and DGGE analyses confirmed that no significant changes occurred in the microbial community, suggesting that the changes in the biomass activity were due to different metabolic behavior, allowing the organisms to proliferate under conditions with fluctuating phosphate levels.

Collaboration


Dive into the Carlos M. Lopez-Vazquez's collaboration.

Top Co-Authors

Avatar

Christine M. Hooijmans

UNESCO-IHE Institute for Water Education

View shared research outputs
Top Co-Authors

Avatar

D. Brdjanovic

Delft University of Technology

View shared research outputs
Top Co-Authors

Avatar

Damir Brdjanovic

UNESCO-IHE Institute for Water Education

View shared research outputs
Top Co-Authors

Avatar

M.C.M. van Loosdrecht

Delft University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

L. Welles

Delft University of Technology

View shared research outputs
Top Co-Authors

Avatar

Ben Abbas

Delft University of Technology

View shared research outputs
Top Co-Authors

Avatar

F.J. Rubio-Rincón

UNESCO-IHE Institute for Water Education

View shared research outputs
Top Co-Authors

Avatar

Huub J. Gijzen

UNESCO-IHE Institute for Water Education

View shared research outputs
Top Co-Authors

Avatar

Adrian Oehmen

Universidade Nova de Lisboa

View shared research outputs
Researchain Logo
Decentralizing Knowledge