Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carlos Pirmez is active.

Publication


Featured researches published by Carlos Pirmez.


Journal of Geophysical Research | 1998

Clinoform development by advection-diffusion of suspended sediment: Modeling and comparison to natural systems

Carlos Pirmez; Lincoln F. Pratson; Michael S. Steckler

Clinoforms are the building blocks of prograding stratigraphic sequences. These sig- moid-shaped surfaces can be found forming today on modem deltas. Sedimentation rate profiles over the clinoform surface of these deltas show low rates of sediment accumulation on both topset and bottomset regions, with a maximum accumulation rate on the upper foreset region. We pres- ent a model for the formation of clinoforms that relies on the interpretation of modem clinoform sedimentation as a result of the distribution of shear stresses at the mouth of a river. Model clino- form surfaces are generated using an equation for the conservation of suspended sediment concentration, together with a conservation of fluid equation for simple time-averaged flow velocity fields. In the model, suspended sediment is advected horizontally into a basin, and gravitational settling of sediment particles is counteracted by vertical turbulent diffusion. In shallow water, shear stresses are too large to allow deposition, and sediment bypasses the topset region. With increasing water depth, near-bed shear stresses decrease, and sediment is allowed to deposit at the foreset region, with gradually decreasing rates toward deeper water. This sedimentation pattern leads to progradation of the clinoform surfaces through time. The clinoform surfaces produced by the model capture the fundamental morphological characteristics of natural clinoforms. These include the gradual slope rollover at the topset and bottomset, steeper foreset slopes with increased grain size, and an increase in foreset slope through time as clinoforms prograde into deeper water. Because the parameters controlling the model clinoforms have a direct relation to physical quantities that can be measured in natural systems, the model is an important step toward unraveling the physical processes associated with these deposits.


Marine Geology | 2002

Variability in form and growth of sediment waves on turbidite channel levees

William R. Normark; David J. W. Piper; Henry W. Posamentier; Carlos Pirmez; Sébastien Migeon

Fine-grained sediment waves have been observed in many modern turbidite systems, generally restricted to the overbank depositional element. Sediment waves developed on six submarine fan systems are compared using high-resolution seismic-reflection profiles, sediment core samples (including ODP drilling), multibeam bathymetry, 3D seismic-reflection imaging (including examples of burried features), and direct measurements of turbidity currents that overflow their channels. These submarine fan examples extend over more than three orders of magnitude in physical scale. The presence or absence of sediment waves is not simply a matter of either the size of the turbidite channel-levee systems or the dominant initiation process for the turbidity currents that overflow the channels to form the wave fields. Both sediment-core data and seismic-reflection profiles document the upslope migration of the wave forms, with thicker and coarser beds deposited on the up-current flank of the waves. Some wave fields are orthogonal to channel trend and were initiated by large flows whose direction was controlled by upflow morphology, whereas fields subparallel to channel levees resulted from local spillover. In highly meandering systems, sediment waves may mimic meander planform. Larger sediment waves form on channel-levee systems with thicker overflow of turbidity currents, but available data indicate that sediment waves can be maintaned during conditions of relatively thin overflow. Coarser-grained units in sediment waves are typically laminated and thin-bedded sand as much as several centimetres thick, but sand beds as thick as several tens of centimetres have been documented from both modern and buried systems. Current production of hydrocarbons from sediment-wave deposits suggests that it is important to develop criteria for recognising this overbank element in outcrop exposures and borehole data, where the wavelength of typical waves (several kilometres) generally exceeds outcrop scales and wave heights, which are reduced as a result of consolidation during burial, may be too subtle to recognise.


Journal of Fluid Mechanics | 1999

A nonlinear model of flow in meandering submarine and subaerial channels

Jasim Imran; Gary Parker; Carlos Pirmez

A generalized model of flow in meandering subaqueous and subaerial channels is developed. The conservation equations of mass and momentum are depth/layer integrated, normalized, and represented as deviations from a straight base state. This allows the determination of integrable forms which can be solved at both linear and nonlinear levels. The effects of various flow and geometric parameters on the flow dynamics are studied. Although the model is not limited to any specific planform, this study focuses on sine-generated curves. In analysing the flow patterns, the turbidity current of the subaqueous case is simplified to a conservative density flow with water entrainment from above neglected. The subaqueous model thus formally corresponds to a subcritical or only mildly supercritical mud-rich turbidity current. By extension, however the analysis can be applied to a depositional or erosional current carrying sand that is changing only slowly in the streamwise direction. By bringing the subaqueous and subaerial cases into a common form, flow behaviour in the two environments can be compared under similar geometric and boundary conditions. A major difference between the two cases is the degree of superelevation of channel flow around bends, which is modest in the subaerial case but substantial in the subaqueous case. Another difference concerns Coriolis effects: some of the largest subaqueous meandering systems are so large that Coriolis effects can become important. The model is applied to meander bends on the youngest channel in the mid-fan region of the Amazon Fan and a mildly sinuous bend of the North-West Atlantic Mid-Ocean Channel. In the absence of specific data on the turbid flows that created the channel, the model can be used to make inferences about the flow, and in particular the range of values of flow velocity and sediment concentration that would allow the growth and downfan migration of meander bends.


Geological Society of America Bulletin | 2008

Interactions between turbidity currents and topography in aggrading sinuous submarine channels: A laboratory study

Kyle M. Straub; David Mohrig; Brandon McElroy; James L. Buttles; Carlos Pirmez

We present results from a laboratory experiment documenting the evolution of a sinuous channel form via sedimentation from 24 turbidity currents having constant initial conditions. The initial channel had a sinuosity of 1.32, a wavelength of 1.95, an amplitude of 0.39 m, and three bends. All currents had a densimetric Froude number of 0.53 and an initial height equal to the channel relief at the start of the experiment. Large superelevation of currents was observed at bend apexes. This superelevation was 85%–142% greater than the value predicted by a balance of centrifugal and pressure-gradient forces. An additional contribution to the superelevation was the runup of the current onto the outer banks of bends. This runup height is described by a balance between kinetic and potential energy. Runup resulted in deposition of coarse particles on levee crests that were indistinguishable from those deposited on the channel bottom. Deposit thickness and composition showed a strong cross-channel asymmetry. Thicker, coarser, steeper levees grew on the outer banks relative to the inner banks of bends. Zones of flow separation were observed downstream from bend apexes along inner banks and affected sedimentation patterns. Sedimentation from currents caused the channel to aggrade with almost no change in planform. However, channel relief decreased throughout the experiment because deposition on the channel bottom always exceeded deposition at levee crests. The first bend served as a filter for the properties of the channelized current, bringing discharge at the channel entrance into agreement with the channel cross-sectional area. Excess discharge exited the channel at this filtering bend and was lost to the overbank surface.


Archive | 1991

Seismic Facies and Late Quaternary Growth of Amazon Submarine Fan

Roger D. Flood; Patricia L. Manley; Renato Oscar Kowsmann; Ciro J. Appi; Carlos Pirmez

The Amazon Fan contains sedimentary/acoustic sequences characteristic of many large and small modern mud-rich fans. Analyses of high-resolution single-channel seismic-reflection profiles and 3.5-kHz profiles suggest that fan growth is in part related to sea-level fluctuations and in part related to events such as channel bifurcations and large debris flows that appear unrelated to sea-level position. Sinuous fan channels are perched on top of lens-shaped overbank deposits to form channel-levee systems in the upper and middle fan. Individual channel-levee systems overlap and coalesce to build levee complexes that also stack and overlap, but that are bounded by large debris-flow deposits. Because both channel-levee systems and debris flows can be active at the same time, this depositional pattern does not necessarily develop as a result of sea-level change. The sinuous fan channels appear to be nearly at grade because channel sinuosity varies downfan to keep the along-channel gradient uniformly decreasing downfan. Flat-lying, high-amplitude reflection packets that underlie a channel-levee system and extend downfan to form part of the lower fan may develop when new, oversteepened channels are created as a result of avulsion on the middle fan. This suggests that portions of the lower fan are formed concurrently with channel-levee systems. Piston cores from near the most recently active channel suggest that the locus of sedimentation shifted landward as sea level rose at the end of the last glaciation.


Geology | 2007

Helical flow couplets in submarine gravity underflows

Jasim Imran; Mohammad Ashraful Islam; Heqing Huang; Ahmed Kassem; John Dickerson; Carlos Pirmez; Gary Parker

Active and relic meandering channels are common on the seafloor adjacent to continental margins. These channels and their associated submarine fan deposits are products of the density-driven gravity flows known as turbidity currents. The tie between channel curvature and its effects on these gravity flows has been an enigma. This paper records the results of both large-scale laboratory measurements and a numerical simulation that captures the three-dimensional flow field of a gravity underflow at a channel bend. These findings reveal that channel curvature drives two helical flow cells, one stacked upon the other. The lower cell forms near the channel bed surface and has a circulation pattern similar to that observed in fluvial channels, i.e., with a near-bed flow directed inward. The other circulation cell forms in the upper part of the gravity flow and has a streamwise vorticity with the opposite sense of the lower cell.


Journal of Geophysical Research | 2009

Sublacustrine depositional fans in southwest Melas Chasma

Joannah M. Metz; John P. Grotzinger; David Mohrig; Ralph E. Milliken; Bradford E. Prather; Carlos Pirmez; Alfred S. McEwen; Catherine M. Weitz

Two depositional fan complexes have been identified on the floor of southwest Melas Chasma. The western fan complex is located near the center of an enclosed basin in southwest Melas Chasma and is composed of multiple lobes with dendritic finger-like terminations. These fans are very flat and have a morphology unlike any other fan that has been previously identified on Mars. On the basis of the morphologic similarity of the western fan complex to the Mississippi submarine fan complex, we suggest that it may be a deep subaqueous fan depositional system. There are numerous channels on the surface of the western fan complex, and measurements of channel length, width, and sinuosity are consistent with channels observed on terrestrial submarine fans. The eastern Melas depositional fans are less well preserved and may be of deltaic or sublacustrine origin. Recognition of the fans supports earlier suggestions for the presence of a former lake in Melas Chasma and indicates that a significant body of water was present and stable at the surface of Mars for at least 10^2 to 10^4 years.


Archive | 2010

Turbidite Channel Architecture: Recognizing and Quantifying the Distribution of Channel-base Drapes Using Core and Dipmeter Data

Mark D. Barton; Ciaran O'Byrne; Carlos Pirmez; Bradford E. Prather; Frans F. van der Vlugt; F. Omer Alpak; Zoltán Sylvester

Field and simulation studies indicate that channel architecture and the presence of channel-base drapes (CBDs) can have a significant impact on oil recovery and represent key uncertainties in the understanding of a turbidite channel reservoir. Accordingly, understanding the frequency and distribution of CBDs provides valuable insights into reservoir performance. Core and dipmeter data contain information that can be used to recognize channel-base disconformities and associated CBDs. By comparing the observed number of channel-base disconformities to the observed number of disconformities overlain by mudstone, a statistical assessment of their frequency and distribution can be made. In a spatial sense, the fraction observed in the wells represents the average percentage of the channel elements within the reservoir that are overlain by a drape.


AAPG Bulletin | 2015

Stratigraphic evolution of intraslope minibasins: Insights from surface-based model

Zoltán Sylvester; Allessandro Cantelli; Carlos Pirmez

Although numerous case studies exist to illustrate the large-scale stratigraphic architecture of salt-withdrawal minibasins, there is no clear understanding of how stratal patterns emerge as a function of the interplay between basin subsidence and sedimentation. Here we present a simple model of mass balance in minibasin sedimentation that focuses on the interaction between long-term sediment supply and basin-wide subsidence rate. The model calculates the sediment flux in three dimensions assuming a simplified basin and deposit geometry. The main model output is a cross section that captures the large-scale stratigraphic patterns. This architecture is determined by the relative movement of the stratal terminations along the basin margin: consecutive pinchout points can (1) be stationary, (2) move toward the basin edge (onlap), or (3) move toward the basin center (offlap). The direction and magnitude of this movement depend on the balance between the volume made available through subsidence, calculated only over the area of the previous deposit, and the volume needed to accommodate all the sediment that comes into the basin. Cycles of increasing-to-decreasing sediment supply result in stratigraphic sequences with an onlapping lower part and offlapping upper part. If the sediment input curve is more similar to a step function, stratigraphic sequences only consist of an onlapping sediment package, with no offlap at the top. Modeling two linked basins in which deposition takes place during ongoing subsidence shows that conventional static fill-and-spill models cannot correctly capture the age relationships between basin fills. In general, lower sediment input rates and periods of sediment bypass result in sand-poor convergent stratal patterns, and episodic but high volumetric sedimentation rates lead to well-defined onlap with an increased probability of high sand content.


Journal of Hydraulic Research | 2009

Nondimensional parameters of depth-averaged gravity flow models

Heqing Huang Iahr Member; Jasim Imran Iahr Member; Carlos Pirmez

The nondimensional parameters involved in a four-equation depth-averaged model of gravity flows have been studied using a vertical structure resolving numerical model at both field and laboratory scales. The main findings of this study are: (i) Water entrainment coefficient of gravity flows depends strongly on the bed slope, but compared with the bulk Richardson number, it has a weak dependence on entrainment/deposition at the bottom boundary; (ii) Depositional flow at laboratory scale may become erosive and thus change its characteristics significantly at the field scale if scaled by the densimetric Froude number; (iii)Values of the shape factors of depth-averaged models deviate from those approximated by the top-hat assumption, but they vary little with changes in channel bed slope, inflow, erosion/deposition at the bottom boundary, or scale. Two different sets of shape factors are recommended, one for conservative density flows and another for turbidity currents.

Collaboration


Dive into the Carlos Pirmez's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Mohrig

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jasim Imran

University of South Carolina

View shared research outputs
Top Co-Authors

Avatar

Alessandro Cantelli

University of Illinois at Urbana–Champaign

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge