Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carlos Platas-Iglesias is active.

Publication


Featured researches published by Carlos Platas-Iglesias.


Chemistry: A European Journal | 2002

Zeolite GdNaY Nanoparticles with Very High Relaxivity for Application as Contrast Agents in Magnetic Resonance Imaging

Carlos Platas-Iglesias; Luce Vander Elst; Wuzong Zhou; Robert N. Muller; Carlos F. G. C. Geraldes; Thomas Maschmeyer; Joop A. Peters

In this paper we explore Gd(3+)-doped zeolite NaY nanoparticles for their potential application as a contrast agent in magnetic resonance imaging (MRI). The nanoparticles have an average size of 80-100 nm, as determined by TEM and XRD. A powdered sample loaded with La3+ was characterised by means of multinuclear solid-state NMR spectroscopy. The NMR dispersion (NMRD) profiles obtained from aqueous suspensions of samples with Gd3+ doping ratios of 1.3-5.4 wt% were obtaining at different temperatures. The relaxivity increases drastically as the Gd3+ loading decreases, with values ranging between 11.4 and 37.7 s-1 mM-1 at 60 MHz and 37 degrees C. EPR spectra of aqueous suspensions of the samples suggest that an interaction between neighbouring Gd3+ ions within the same particle produces a significant increase in the transversal electronic relaxation rates in samples with a high Gd3+ content. The experimental NMRD and EPR data are explained with the use of a model that considers the system as a concentrated aqueous solution of Gd3+ in the interior of the zeolite that is in exchange with the bulk water outside the zeolite. The results obtained indicate that the Gd3+ ion is immobilised in the interior of the zeolite and that the relaxivity is mainly limited by the relatively slow diffusion of water protons from the pores of the zeolite channels into the bulk water.


Inorganic Chemistry | 2012

Monopicolinate cyclen and cyclam derivatives for stable copper(II) complexation.

Luís M. P. Lima; David Esteban-Gómez; Rita Delgado; Carlos Platas-Iglesias; Raphaël Tripier

The syntheses of a new 1,4,7,10-tetraazacyclododecane (cyclen) derivative bearing a picolinate pendant arm (HL1), and its 1,4,8,11-tetraazacyclotetradecane (cyclam) analogue HL2, were achieved by using two different selective-protection methods involving the preparation of cyclen-bisaminal or phosphoryl cyclam derivatives. The acid-base properties of both compounds were investigated as well as their coordination chemistry, especially with Cu(2+), in aqueous solution and in solid state. The copper(II) complexes were synthesized, and the single crystal X-ray diffraction structures of compounds of formula [Cu(HL)](ClO(4))(2)·H(2)O (L = L1 or L2), [CuL1](ClO(4)) and [CuL2]Cl·2H(2)O, were determined. These studies revealed that protonation of the complexes occurs on the carboxylate group of the picolinate moiety. Stability constants of the complexes were determined at 25.0 °C and ionic strength 0.10 M in KNO(3) using potentiometric titrations. Both ligands form complexes with Cu(2+) that are thermodynamically very stable. Additionally, both HL1 and HL2 exhibit an important selectivity for Cu(2+) over Zn(2+). The kinetic inertness in acidic medium of both complexes of Cu(2+) was evaluated by spectrophotometry revealing that [CuL2](+) is much more inert than [CuL1](+). The determined half-life values also demonstrate the very high kinetic inertness of [CuL2](+) when compared to a list of copper(II) complexes of other macrocyclic ligands. The coordination geometry of the copper center in the complexes was established in aqueous solution from UV-visible and electron paramagnetic resonance (EPR) spectroscopy, showing that the solution structures of both complexes are in excellent agreement with those of crystallographic data. Cyclic voltammetry experiments point to a good stability of the complexes with respect to metal ion dissociation upon reduction of the metal ion to Cu(+) at about neutral pH. Our results revealed that the cyclam-based ligand HL2 is a very attractive receptor for copper(II), presenting a fast complexation process, a high kinetic inertness, and important thermodynamic and electrochemical stability.


Angewandte Chemie | 2013

Simultaneous self-assembly of a [2]catenane, a trefoil knot, and a Solomon link from a simple pair of ligands.

Thirumurugan Prakasam; Matteo Lusi; Mourad Elhabiri; Carlos Platas-Iglesias; John-Carl Olsen; Zouhair Asfari; Sarah Cianférani‐Sanglier; François Debaene; Loïc J. Charbonnière; Ali Trabolsi

A topological triptych: Three molecular links, a [2]catenane, a trefoil knot, and a Solomon link, were obtained in one pot through the self-assembly of two simple ligands in the presence of Zn(II). The approach relied on dynamic covalent chemistry and metal templation.


Inorganic Chemistry | 2011

Positively Charged Lanthanide Complexes with Cyclen-Based Ligands: Synthesis, Solid-State and Solution Structure, and Fluoride Interaction

Luís M. P. Lima; Alexandre Lecointre; Jean-François Morfin; Andrés de Blas; Dimitris Visvikis; Loı̈c J. Charbonnière; Carlos Platas-Iglesias; Raphaël Tripier

The syntheses of a new cyclen-based ligand L(2) containing four N-[2-(2-hydroxyethoxy)ethyl]acetamide pendant arms and of its lanthanide(III) complexes [LnL(2)(H(2)O)]Cl(3) (Ln = La, Eu, Tb, Yb, or Lu) are reported, together with a comparison with some Ln(III) complexes of a previously reported analogue L(1) in which two opposite amide arms have been replaced by coordinating pyridyl units. The structure and dynamics of the La(III), Lu(III), and Yb(III) complexes in solution were studied by using multinuclear NMR investigations and density functional theory calculations. Luminescence lifetime measurements in H(2)O and D(2)O solutions of the [Ln(L(2))(H(2)O)](3+) complexes (Ln = Eu or Tb) were used to investigate the number of H(2)O molecules coordinated to the metal ion, pointing to the presence of an inner-sphere H(2)O molecule in a buffered aqueous solution. Fluoride binding to the latter complexes was investigated using a combination of absorption spectroscopy and steady-state and time-resolved luminescence spectroscopy, pointing to a surprisingly weak interaction in the case of L(2) (log K = 1.4 ± 0.1). In contrast to the results in solution, the X-ray crystal structure of the lanthanide complex showed the ninth coordination position occupied by a chloride anion. In the case of L(1), the X-ray structure of the [(EuL(1))(2)F] complex features a bridging fluoride donor with an uncommon linear Eu-F-Eu entity connecting two almost identical [Eu(L(1))](3+) units. Encapsulation of the F(-) anion within the two complexes is assisted by π-π stacking between the pyridyl rings of two complexes and C-H···F hydrogen-bonding interactions involving the anion and the pyridyl units.


Angewandte Chemie | 2014

Supramolecular Luminescent Lanthanide Dimers for Fluoride Sequestering and Sensing

Tao Liu; Aline Nonat; Maryline Beyler; Martín Regueiro-Figueroa; Katia Nchimi Nono; Olivier Jeannin; Franck Camerel; François Debaene; Sarah Cianférani‐Sanglier; Raphaël Tripier; Carlos Platas-Iglesias; Loïc J. Charbonnière

Lanthanide complexes (Ln=Eu, Tb, and Yb) that are based on a C2 -symmetric cyclen scaffold were prepared and characterized. The addition of fluoride anions to aqueous solutions of the complexes resulted in the formation of dinuclear supramolecular compounds in which the anion is confined into the cavity that is formed by the two complexes. The supramolecular assembly process was monitored by UV/Vis absorption, luminescence, and NMR spectroscopy and high-resolution mass spectrometry. The X-ray crystal structure of the europium dimer revealed that the architecture of the scaffold is stabilized by synergistic effects of the EuFEu bridging motive, π stacking interactions, and a four-component hydrogen-bonding network, which control the assembly of the two [EuL] entities around the fluoride ion. The strong association in water allowed for the luminescence sensing of fluoride down to a detection limit of 24 nM.


Inorganic Chemistry | 2011

Lanthanide dota-like Complexes Containing a Picolinate Pendant: Structural Entry for the Design of LnIII-Based Luminescent Probes

Martín Regueiro-Figueroa; Bachir Bensenane; Erika Ruscsák; David Esteban-Gómez; Loïc J. Charbonnière; Gyula Tircsó; Imre Tóth; Andrés de Blas; Teresa Rodríguez-Blas; Carlos Platas-Iglesias

In this contribution we present two ligands based on a do3a platform containing a picolinate group attached to the fourth nitrogen atom of the cyclen unit, which are designed for stable lanthanide complexation in aqueous solutions. Potentiometric measurements reveal that the thermodynamic stability of the complexes is very high (log K = 21.2-23.5), being comparable to that of the dota analogues. Luminescence lifetime measurements performed on solutions of the Eu(III) and Tb(III) complexes indicate that the complexes are nine coordinate with no inner-sphere water molecules. A combination of density functional theory (DFT) calculations and NMR measurements shows that for the complexes of the heaviest lanthanides there is a major isomer in solution consisting of the enantiomeric pair Λ(δδδδ) and Δ(λλλλ), which provides square antiprismatic coordination (SAP) around the metal ion. Analysis of the Yb(III)-induced paramagnetic shifts unambiguously confirms that these complexes have SAP coordination in aqueous solution. For the light lanthanide ions however both the SAP and twisted-square antiprismatic (TSAP) isomers are present in solution. Inversion of the cyclen ring appears to be the rate-determining step for the Λ(δδδδ) ↔ Δ(λλλλ) enantiomerization process observed in the Lu(III) complexes. The energy barriers obtained from NMR measurements for this dynamic process are in excellent agreement with those predicted by DFT calculations. The energy barriers calculated for the arm-rotation process are considerably lower than those obtained for the ring-inversion path. Kinetic studies show that replacement of an acetate arm of dota by a picolinate pendant results in a 3-fold increase in the formation rate of the corresponding Eu(III) complexes and a significant increase of the rates of acid-catalyzed dissociation of the complexes. However, these rates are 1-2 orders of magnitude lower than those of do3a analogues, which shows that the complexes reported herein are remarkably inert with respect to metal ion dissociation.


ChemPhysChem | 2012

Hyperfine coupling constants on inner-sphere water molecules of Gd(III)-based MRI contrast agents.

David Esteban-Gómez; Andrés de Blas; Teresa Rodríguez-Blas; Lothar Helm; Carlos Platas-Iglesias

Herein we present a theoretical investigation of the hyperfine coupling constants (HFCCs) on the inner-sphere water molecules of [Gd(H(2)O)(8)](3+) and different Gd(III)-based magnetic resonance imaging contrast agents such as [Gd(DOTA)(H(2)O)](-), [Gd(DTPA)(H(2)O)](2-), [Gd(DTPA-BMA)(H(2)O)] and [Gd(HP-DO3A)(H(2)O)]. DFT calculations performed on the [Gd(H(2)O)(8)](3+) model system show that both hybrid-GGA functionals (BH&HLYP, B3PW91 and PBE1PBE) and the hybrid meta-GGA functional TPSSh provide (17)O HFCCs in close agreement with the experimental data. The use of all-electron relativistic approaches based on the DKH2 approximation and the use of relativistic effective core potentials (RECP) provide results of essentially the same quality. The accurate calculation of HFCCs on the [Gd(DOTA)(H(2)O)](-), [Gd(DTPA)(H(2)O)](2-), [Gd(DTPA-BMA)(H(2)O)] and [Gd(HP-DO3A)(H(2)O)] complexes requires an adequate description of solvent effects. This was achieved by using a mixed cluster/continuum approach that includes explicitly two second-sphere water molecules. The calculated isotropic (17)O HFCCs (A(iso)) fall within the range 0.40-0.56 MHz, and show deviations from the corresponding experimental values typically lower than 0.05 MHz. The A(iso) values are significantly affected by the distance between the oxygen atom of the coordinated water molecule and the Gd(III) ion, as well as by the orientation of the water molecule plane with respect to the Gd-O vector. (1)H HFCCs of coordinated water molecules and (17)O HFCCs of second-sphere water molecules take values close to zero.


Inorganic Chemistry | 2009

Solution Structure and Dynamics, Stability, and NIR Emission Properties of Lanthanide Complexes with a Carboxylated Bispyrazolylpyridyl Ligand

Marta Mato-Iglesias; Teresa Rodríguez-Blas; Carlos Platas-Iglesias; Matthieu Starck; Pascal Kadjane; Raymond Ziessel; Loïc J. Charbonnière

The complexation behavior of the ligand 2,6-bis{3-[N,N-bis(carboxymethyl)aminomethyl]pyrazol-1-yl}-pyridine, L, toward lanthanide cations was investigated throughout the series. Potentiometric titration experiments on L (0.1 M KCl) revealed the presence of four protonation steps in the 2-12 pH domain, associated with the protonation of the two tertiary amine nitrogen atoms and with two of the four carboxylate functions. The stability constants for the formation of the [LnL](-) complexes (Ln = La, Nd, Eu, Ho, and Lu) were determined in water and evidenced a hill-shaped complexation trend along the series, with log K increasing from 14.56(9) (La) to 16.68(2) (Ho) and decreasing to 15.42(2) (Lu). Geometry optimizations showed the [LnL](-) complexes (Ln = La, Nd, Eu, Ho, Yb, and Lu) adopting a C(2) symmetry with the symmetry axis going through the metal atom and the nitrogen atom of the central pyridine ring, leading to the presence of Delta and Lambda helical enantiomers. Analysis of the calculated Ln-O and Ln-N bond lengths showed a marked deviation from the expected values at the end of the series, which accounts for the observed decreased complexation affinity. (1)H and (13)C NMR experiments in D(2)O (room temperature) showed the shortening of the bond distances in [LnL](-) complexes from La to Lu to be accompanied by a rigidification of the structure, leading to a decreased C(2) symmetry for the Lu complex compared to C(2v) for La. This decreased symmetry was attributed to a slow Delta <--> Lambda interconversion that was followed by variable-temperature (13)C NMR experiments on the Lu complex. The activation parameters determined by line broadening analysis for this interconversion process point to an associatively assisted interconversion process. The (1)H NMR spectrum of the paramagnetic [YbL](-) complex was investigated in D(2)O, and a lanthanide induced shift analysis showed good agreement between the observed paramagnetic chemical shifts and those calculated from the DFT optimized structures using a dipolar model, especially when solvent effects are taken into account. The UV-vis absorption and near-infrared luminescence spectra of the Pr, Nd, Er, and Yb complexes were measured in water and showed the complexation pocket provided by the ligand to be well-suited for the protection of the cations, all of them displaying typical Ln-centered emission spectra, the Yb complex having a relatively long lifetime of 3.0 micros in water.


Inorganic Chemistry | 2009

Stability, Water Exchange, and Anion Binding Studies on Lanthanide(III) Complexes with a Macrocyclic Ligand Based on 1,7-Diaza-12-crown-4: Extremely Fast Water Exchange on the Gd3+ Complex

Zoltán Pálinkás; Adrián Roca-Sabio; Marta Mato-Iglesias; David Esteban-Gómez; Carlos Platas-Iglesias; Andrés de Blas; Teresa Rodríguez-Blas; Éva Tóth

The picolinate-derivative ligand based on the 1,7-diaza-12-crown-4 platform (bp12c4(2-)) forms stable Ln(3+) complexes with stability constants increasing from the early to the middle lanthanides, then being relatively constant for the rest of the series (logK(LnL) = 16.81(0.06), 18.82(0.01), and 18.08(0.05) for Ln = La, Gd, and Yb, respectively). The complex formation is fast, allowing for direct potentiometric titrations to assess the stability constants. In the presence of Zn(2+), the dissociation of [Gd(bp12c4)](+) proceeds both via proton- and metal-assisted pathways, and in this respect, this system is intermediate between DTPA-type and macrocyclic, DOTA-type chelates, for which the dissociation is predominated by metal- or proton-assisted pathways, respectively. The Cu(2+) exchange shows an unexpected pH dependency, with the observed rate constants decreasing with increasing proton concentration. The rate of water exchange, assessed by (17)O NMR, is extremely high on the [Gd(bp12c4)(H(2)O)(q)](+) complex (k(ex)(298) = (2.20 +/- 0.15) x 10(8) s(-1)), and is in the same order of magnitude as for the Gd(3+) aqua ion (k(ex)(298) = 8.0 x 10(8) s(-1)). In aqueous solution, the [Gd(bp12c4)(H(2)O)(q)](+) complex is present in hydration equilibrium between nine-coordinate, monohydrated, and ten-coordinate, bishydrated species. We attribute the fast exchange to the hydration equilibrium and to the flexible nature of the inner coordination sphere. The large negative value of the activation entropy (DeltaS = -35 +/- 8 J mol(-1) K(-1)) points to an associative character for the water exchange and suggests that water exchange on the nine-coordinate, monohydrated species is predominant in the overall exchange. Relaxometric and luminescence measurements on the Gd(3+) and Eu(3+) analogues, respectively, indicate strong binding of endogenous anions such as citrate, hydrogencarbonate, or phosphate to [Ln(bp12c4)](+) complexes (K(aff) = 280 +/- 20 M(-1), 630 +/- 50 M(-1), and 250 +/- 20 M(-1), respectively). In the ternary complexes, the inner sphere water molecules are fully replaced by the corresponding anion. Anion binding is favored by the positive charge of the [Ln(bp12c4)](+) complexes and the adjacent position of the two inner sphere water molecules. To obtain information about the structure of the ternary complexes, the [Gd(bp12c4)(HCO(3))] and [Gd(bp12c4)(H(2)PO(4))] systems were investigated by means of density functional theory calculations (B3LYP model). They show that anion coordination provokes an important lengthening of the distances between the donor atoms and the lanthanide ion. The coordination of phosphate induces a more important distortion of the metal coordination environment than the coordination of hydrogencarbonate, in accordance with a higher binding constant for HCO(3)(-) and a more important steric demand of phosphate.


Inorganic Chemistry | 2012

Lanthanide(III) complexes with ligands derived from a cyclen framework containing pyridinecarboxylate pendants. The effect of steric hindrance on the hydration number.

Aurora Rodríguez-Rodríguez; David Esteban-Gómez; Andrés de Blas; Teresa Rodríguez-Blas; Marianna Fekete; Mauro Botta; Raphaël Tripier; Carlos Platas-Iglesias

Two new macrocyclic ligands, 6,6′-((1,4,7,10-tetraazacyclododecane-1,7-diyl)bis(methylene))dipicolinic acid (H2DODPA) and 6,6′-((4,10-dimethyl-1,4,7,10-tetraazacyclododecane-1,7-diyl)bis(methylene))dipicolinic acid (H2Me-DODPA), designed for complexation of lanthanide ions in aqueous solution, have been synthesized and studied. The X-ray crystal structure of [Yb(DODPA)](PF6)·H2O shows that the metal ion is directly bound to the eight donor atoms of the ligand, which results in a square-antiprismatic coordination around the metal ion. The hydration numbers (q) obtained from luminescence lifetime measurements in aqueous solution of the Eu(III) and Tb(III) complexes indicate that the DODPA complexes contain one inner-sphere water molecule, while those of the methylated analogue H2Me-DODPA are q = 0. The structure of the complexes in solution has been investigated by 1H and 13C NMR spectroscopy, as well as by theoretical calculations performed at the density functional theory (DFT; mPWB95) level. The minimum energy conformation calculated for the Yb(III) complex [Λ(λλλλ)] is in good agreement with the experimental structure in solution, as demonstrated by the analysis of the Yb(III)-induced paramagnetic 1H shifts. The nuclear magnetic relaxation dispersion (NMRD) profiles recorded for [Gd(Me-DODPA)]+ are typical of a complex with q = 0, where the observed relaxivity can be accounted for by the outer-sphere mechanism. However, [Gd(DODPA)]+ shows NMRD profiles consistent with the presence of both inner- and outer-sphere contributions to relaxivity. A simultaneous fitting of the NMRD profiles and variable temperature 17O NMR chemical shifts and transversal relaxation rates provided the parameters governing the relaxivity in [Gd(DODPA)]+. The results show that this system is endowed with a relatively fast water exchange rate k(ex)(298) = 58 × 10(6) s(–1).

Collaboration


Dive into the Carlos Platas-Iglesias's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Raphaël Tripier

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Éva Tóth

University of Orléans

View shared research outputs
Researchain Logo
Decentralizing Knowledge