Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carlos Portera-Cailliau is active.

Publication


Featured researches published by Carlos Portera-Cailliau.


Nature Protocols | 2009

Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window

Anthony Holtmaat; Tobias Bonhoeffer; David K. Chow; Ja Chuckowree; Vincenzo De Paola; Sonja B. Hofer; Mark Hübener; Tara Keck; Graham Knott; Wei-Chung Allen Lee; Ricardo Mostany; Thomas D. Mrsic-Flogel; Elly Nedivi; Carlos Portera-Cailliau; Karel Svoboda; Joshua T Trachtenberg; Linda Wilbrecht

To understand the cellular and circuit mechanisms of experience-dependent plasticity, neurons and their synapses need to be studied in the intact brain over extended periods of time. Two-photon excitation laser scanning microscopy (2PLSM), together with expression of fluorescent proteins, enables high-resolution imaging of neuronal structure in vivo. In this protocol we describe a chronic cranial window to obtain optical access to the mouse cerebral cortex for long-term imaging. A small bone flap is replaced with a coverglass, which is permanently sealed in place with dental acrylic, providing a clear imaging window with a large field of view (∼0.8–12 mm2). The surgical procedure can be completed within ∼1 h. The preparation allows imaging over time periods of months with arbitrary imaging intervals. The large size of the imaging window facilitates imaging of ongoing structural plasticity of small neuronal structures in mice, with low densities of labeled neurons. The entire dendritic and axonal arbor of individual neurons can be reconstructed.


The Journal of Neuroscience | 2010

Delayed Stabilization of Dendritic Spines in Fragile X Mice

Alberto Cruz-Martín; Michelle Crespo; Carlos Portera-Cailliau

Fragile X syndrome (FXS) causes mental impairment and autism through transcriptional silencing of the Fmr1 gene, resulting in the loss of the RNA-binding protein fragile X mental retardation protein (FMRP). Cortical pyramidal neurons in affected individuals and Fmr1 knock-out (KO) mice have an increased density of dendritic spines. The mutant mice also show defects in synaptic and experience-dependent circuit plasticity, which are known to be mediated in part by dendritic spine dynamics. We used in vivo time-lapse imaging with two-photon microscopy through cranial windows in male and female neonatal mice to test the hypothesis that dynamics of dendritic protrusions are altered in KO mice during early postnatal development. We find that layer 2/3 neurons from wild-type mice exhibit a rapid decrease in dendritic spine dynamics during the first 2 postnatal weeks, as immature filopodia are replaced by mushroom spines. In contrast, KO mice show a developmental delay in the downregulation of spine turnover and in the transition from immature to mature spine subtypes. Blockade of metabotropic glutamate receptor (mGluR) signaling, which reverses some adult phenotypes of KO mice, accentuated this immature protrusion phenotype in KO mice. Thus, absence of FMRP delays spine stabilization and dysregulated mGluR signaling in FXS may partially normalize this early synaptic defect.


The Journal of Neuroscience | 2009

Internally mediated developmental desynchronization of neocortical network activity.

Peyman Golshani; J. Tiago Gonçalves; Sattar Khoshkhoo; Ricardo Mostany; Stelios M. Smirnakis; Carlos Portera-Cailliau

During neocortical development, neurons exhibit highly synchronized patterns of spontaneous activity, with correlated bursts of action potential firing dominating network activity. This early activity is eventually replaced by more sparse and decorrelated firing of cortical neurons, which modeling studies predict is a network state that is better suited for efficient neural coding. The precise time course and mechanisms of this crucial transition in cortical network activity have not been characterized in vivo. We used in vivo two-photon calcium imaging in combination with whole-cell recordings in both unanesthetized and anesthetized mice to monitor how spontaneous activity patterns in ensembles of layer 2/3 neurons of barrel cortex mature during postnatal development. We find that, as early as postnatal day 4, activity is highly synchronous within local clusters of neurons. At the end of the second postnatal week, neocortical networks undergo a transition to a much more desynchronized state that lacks a clear spatial structure. Strikingly, deprivation of sensory input from the periphery had no effect on the time course of this transition. Therefore, developmental desynchronization of spontaneous neuronal activity is a fundamental network transition in the neocortex that appears to be intrinsically generated.


Nature Methods | 2011

Simultaneous two-photon calcium imaging at different depths with spatiotemporal multiplexing

Adrian Cheng; J. Tiago Gonçalves; Peyman Golshani; K. Arisaka; Carlos Portera-Cailliau

In vivo two-photon calcium imaging would benefit from the use of multiple excitation beams to increase scanning speed, signal-to-noise ratio and field of view or to image different axial planes simultaneously. Using spatiotemporal multiplexing we circumvented light-scattering ambiguity inherent to deep-tissue multifocal two-photon microscopy. We demonstrate calcium imaging at multiple axial planes in the intact mouse brain to monitor network activity of ensembles of cortical neurons in three spatial dimensions.


Nature Neuroscience | 2013

Circuit level defects in the developing neocortex of fragile X mice

J. Tiago Gonçalves; James E. Anstey; Peyman Golshani; Carlos Portera-Cailliau

Subtle alterations in how cortical network dynamics are modulated by different behavioral states could disrupt normal brain function and underlie symptoms of neuropsychiatric disorders, including Fragile X syndrome (FXS). Using two-photon calcium imaging and electrophysiology, we recorded spontaneous neuronal ensemble activity in mouse somatosensory cortex. Unanesthetized Fmr1−/− mice exhibited abnormally high synchrony of neocortical network activity, especially during the first two postnatal weeks. Neuronal firing rates were threefold higher in Fmr1−/− mice than in wild-type mice during whole-cell recordings manifesting Up/Down states (slow-wave sleep, quiet wakefulness), probably as a result of a higher firing probability during Up states. Combined electroencephalography and calcium imaging experiments confirmed that neurons in mutant mice had abnormally high firing and synchrony during sleep. We conclude that cortical networks in FXS are hyperexcitable in a brain state–dependent manner during a critical period for experience-dependent plasticity. These state-dependent network defects could explain the intellectual, sleep and sensory integration dysfunctions associated with FXS.


Neuron | 2012

Foxp-Mediated Suppression of N-Cadherin Regulates Neuroepithelial Character and Progenitor Maintenance in the CNS

David L. Rousso; Caroline Alayne Pearson; Zachary B. Gaber; Amaya Miquelajáuregui; Shanru Li; Carlos Portera-Cailliau; Edward E. Morrisey; Bennett G. Novitch

Neuroepithelial attachments at adherens junctions are essential for the self-renewal of neural stem and progenitor cells and the polarized organization of the developing central nervous system. The balance between stem cell maintenance and differentiation depends on the precise assembly and disassembly of these adhesive contacts, but the gene regulatory mechanisms orchestrating this process are not known. Here, we demonstrate that two Forkhead transcription factors, Foxp2 and Foxp4, are progressively expressed upon neural differentiation in the spinal cord. Elevated expression of either Foxp represses the expression of a key component of adherens junctions, N-cadherin, and promotes the detachment of differentiating neurons from the neuroepithelium. Conversely, inactivation of Foxp2 and Foxp4 function in both chick and mouse results in a spectrum of neural tube defects associated with neuroepithelial disorganization and enhanced progenitor maintenance. Together, these data reveal a Foxp-based transcriptional mechanism that regulates the integrity and cytoarchitecture of neuroepithelial progenitors.


Neuron | 2015

Altered Neuronal and Circuit Excitability in Fragile X Syndrome.

Anis Contractor; Vitaly A. Klyachko; Carlos Portera-Cailliau

Fragile X syndrome (FXS) results from a genetic mutation in a single gene yet produces a phenotypically complex disorder with a range of neurological and psychiatric problems. Efforts to decipher how perturbations in signaling pathways lead to the myriad alterations in synaptic and cellular functions have provided insights into the molecular underpinnings of this disorder. From this large body of data, the theme of circuit hyperexcitability has emerged as a potential explanation for many of the neurological and psychiatric symptoms in FXS. The mechanisms for hyperexcitability range from alterations in the expression or activity of ion channels to changes in neurotransmitters and receptors. Contributions of these processes are often brain region and cell type specific, resulting in complex effects on circuit function that manifest as altered excitability. Here, we review the current state of knowledge of the molecular, synaptic, and circuit-level mechanisms underlying hyperexcitability and their contributions to the FXS phenotypes.


Neuroscience | 2013

The trouble with spines in fragile X syndrome: density, maturity and plasticity.

Cynthia X. He; Carlos Portera-Cailliau

Dendritic spines are the principal recipients of excitatory synaptic inputs and the basic units of neural computation in the mammalian brain. Alterations in the density, size, shape, and turnover of mature spines, or defects in how spines are generated and establish synapses during brain development, could all result in neuronal dysfunction and lead to cognitive and/or behavioral impairments. That spines are abnormal in fragile X syndrome (FXS) and in the best-studied animal model of this disorder, the Fmr1 knockout mouse, is an undeniable fact. But the trouble with spines in FXS is that the exact nature of their defect is still controversial. Here, we argue that the most consistent abnormality of spines in FXS may be a subtle defect in activity-dependent spine plasticity and maturation. We also propose some future directions for research into spine plasticity in FXS at the cellular and ultrastructural levels that could help solve a two-decade-long riddle about the integrity of synapses in this prototypical neurodevelopmental disorder.


Journal of Visualized Experiments | 2008

A craniotomy surgery procedure for chronic brain imaging.

Ricardo Mostany; Carlos Portera-Cailliau

Imaging techniques are becoming increasingly important in the study brain function. Among them, two-photon laser scanning microscopy has emerged as an extremely useful method, because it allows the study of the live intact brain. With appropriate preparations, this technique allows the observation of the same cortical area chronically, from minutes to months. In this video, we show a preparation for chronic in vivo imaging of the brain using two-photon microscopy. This technique was initially pioneered by Dr. Karel Svoboda, who is now a Howard Hughes Medical Institute Investigator at Janelia Farm. Preparations like the one shown here can be used for imaging of neocortical structure (e.g., dendritic and axonal dynamics), to record neuronal activity using calcium-sensitive dyes, to image cortical blood flow dynamics, or for intrinsic optical imaging studies. Deep imaging of the neocortex is possible with optimal cranial window surgeries. Operating under the most sterile conditions possible to avoid infections, together with using extreme care to do not damage the dura mater during the surgery, will result in successful and long-lasting glass-covered cranial windows.


The Journal of Neuroscience | 2010

Local Hemodynamics Dictate Long-Term Dendritic Plasticity in Peri-Infarct Cortex

Ricardo Mostany; Tara G. Chowdhury; David G. Johnston; Shiva A. Portonovo; S. Thomas Carmichael; Carlos Portera-Cailliau

Changes in dendritic spine turnover are a major mechanism of experience-dependent plasticity in the adult neocortex. Dendritic spine plasticity may also contribute to functional recovery after stroke, but in that setting its expression may be complicated by alterations in local tissue perfusion, especially around the infarct. Using adult Thy-1 GFP-M mice, we simultaneously recorded long-term spine dynamics in apical dendrites from layer 5 pyramidal cells and blood flow from surrounding capillaries with in vivo two-photon microscopy in peri-infarct cortex before and after unilateral middle cerebral artery occlusion. Blood flow in peri-infarct cortex decreased significantly immediately after stroke and improved gradually over time, in a distance-dependent manner from the epicenter of the infarct. However, local tissue perfusion was never fully restored even after a 3 month recovery period. On average, surviving layer 5 pyramidal neurons experienced a ∼20% decrease in spine density acutely after stroke but eventually recovered. The dynamics of this improvement were different depending on the degree of tissue perfusion acutely after arterial occlusion. Cells in ischemic areas closer to the infarct returned to normal spine density levels slowly by retaining spines, while cells in more remote regions with preserved blood flow recovered faster by adding more spines, eventually surpassing baseline spine density by 15%. Our data suggest that maintaining tissue perfusion in the area surrounding the infarct could hasten or augment synaptic plasticity and functional recovery after stroke.

Collaboration


Dive into the Carlos Portera-Cailliau's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

J. Tiago Gonçalves

Salk Institute for Biological Studies

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anubhuti Goel

University of California

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Amaya Miquelajáuregui

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Alvaro Sagasti

University of California

View shared research outputs
Top Co-Authors

Avatar

Cynthia X. He

University of California

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge