Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carlos R. Zárate-Bladés is active.

Publication


Featured researches published by Carlos R. Zárate-Bladés.


BMC Immunology | 2008

Protection against tuberculosis by a single intranasal administration of DNA-hsp65 vaccine complexed with cationic liposomes

Rogério Silva Rosada; Lucimara Gaziola de la Torre; Fabiani G. Frantz; Ana Pf Trombone; Carlos R. Zárate-Bladés; Denise Morais da Fonseca; Patricia R. M. Souza; Izaíra T. Brandão; Ana Paula Masson; Edson Garcia Soares; Simone G. Ramos; Lúcia Helena Faccioli; Célio Lopes Silva; Maria Ha Santana; Arlete Am Coelho-Castelo

BackgroundThe greatest challenges in vaccine development include optimization of DNA vaccines for use in humans, creation of effective single-dose vaccines, development of delivery systems that do not involve live viruses, and the identification of effective new adjuvants. Herein, we describe a novel, simple technique for efficiently vaccinating mice against tuberculosis (TB). Our technique consists of a single-dose, genetic vaccine formulation of DNA-hsp65 complexed with cationic liposomes and administered intranasally.ResultsWe developed a novel and non-toxic formulation of cationic liposomes, in which the DNA-hsp65 vaccine was entrapped (ENTR-hsp65) or complexed (COMP-hsp65), and used to immunize mice by intramuscular or intranasal routes. Although both liposome formulations induced a typical Th1 pattern of immune response, the intramuscular route of delivery did not reduce the number of bacilli. However, a single intranasal immunization with COMP-hsp65, carrying as few as 25 μg of plasmid DNA, leads to a remarkable reduction of the amount of bacilli in lungs. These effects were accompanied by increasing levels of IFN-γ and lung parenchyma preservation, results similar to those found in mice vaccinated intramuscularly four times with naked DNA-hsp65 (total of 400 μg).ConclusionOur objective was to overcome the significant obstacles currently facing DNA vaccine development. Our results in the mouse TB model showed that a single intranasal dose of COMP-hsp65 elicited a cellular immune response that was as strong as that induced by four intramuscular doses of naked-DNA. This formulation allowed a 16-fold reduction in the amount of DNA administered. Moreover, we demonstrated that this vaccine is safe, biocompatible, stable, and easily manufactured at a low cost. We believe that this strategy can be applied to human vaccines to TB in a single dose or in prime-boost protocols, leading to a tremendous impact on the control of this infectious disease.


Vaccine | 2009

DNAhsp65 vaccination induces protection in mice against Paracoccidioides brasiliensis infection

Alice Melo Ribeiro; Anamélia Lorenzetti Bocca; André C. Amaral; Lúcia Helena Faccioli; Fabio C. S. Galetti; Carlos R. Zárate-Bladés; F. J. C. Figueiredo; Célio Lopes Silva; Maria Sueli Soares Felipe

Heat-shock proteins are molecules with extensive data showing their potential as immunomodulators of different types of diseases. The gene of HSP65 from Mycobacterium leprae has shown prophylactic and immunotherapeutic effects against a broad arrays of experimental models including tuberculosis, leishmaniasis, arthritis and diabetes. With this in mind, we tested the DNAhsp65 vaccine using an experimental model of Paraccocidiodomycosis, an important endemic mycosis in Latin America. The intramuscular immunization with DNAhsp65 induced, in BALB/c mice, an increase of Th1-levels cytokines and a reduction of fungal burdens resulted in a marked reduction of collagen and lung remodeling. DNAhsp65 may be an attractive candidate for prevention, therapy and as an adjuvant for mycosis treatment.


Expert Opinion on Biological Therapy | 2008

Protective efficacy of different strategies employing Mycobacterium leprae heat-shock protein 65 against tuberculosis

Patricia R. M. Souza; Carlos R. Zárate-Bladés; Juliana I. Hori; Simone G. Ramos; Deison Soares de Lima; Tatiana Vieira de Moraes Schneider; Rogério Silva Rosada; Lucimara Gaziola de la Torre; Maria Helena Andrade Santana; Izaíra T. Brandão; Ana Paula Masson; Arlete A. M. Coelho-Castelo; Vania L. D. Bonato; Fabio C. S. Galetti; Eduardo Dc Gonçalves; Domingos A. Botte; Jeanne B. de M. Machado; Célio Lopes Silva

Background: Tuberculosis is a major threat to human health. The high disease burden remains unaffected and the appearance of extremely drug-resistant strains in different parts of the world argues in favor of the urgent need for a new effective vaccine. One of the promising candidates is heat-shock protein 65 when used as a genetic vaccine (DNAhsp65). Nonetheless, there are substantial data indicating that BCG, the only available anti-TB vaccine for clinical use, provides other important beneficial effects in immunized infants. Methods: We compared the protective efficacy of BCG and Hsp65 antigens in mice using different strategies: i) BCG, single dose subcutaneously; ii) naked DNAhsp65, four doses, intramuscularly; iii) liposomes containing DNAhsp65, single dose, intranasally; iv) microspheres containing DNAhsp65 or rHsp65, single dose, intramuscularly; and v) prime–boost with subcutaneous BCG and intramuscular DNAhsp65. Results: All the immunization protocols were able to protect mice against infection, with special benefits provided by DNAhsp65 in liposomes and prime–boost strategies. Conclusion: Among the immunization protocols tested, liposomes containing DNAhsp65 represent the most promising strategy for the development of a new anti-TB vaccine.


Expert Review of Vaccines | 2009

Recent advances in DNA vaccines for autoimmune diseases

Célio Lopes Silva; Vania L. D. Bonato; Rubens R. Santos-Junior; Carlos R. Zárate-Bladés; Alexandrina Sartori

Vaccination is one of the most powerful health tools available owing to its ability to confer protection against various diseases. The long-term impact of such protection in terms of public-health savings is nearly incalculable and becomes even more evident when considering if the vaccination concept is extended to the therapeutic potential of a given molecule. In this sense, DNA vaccines are especially important tools with enormous potential owing to the molecular precision that they offer. The properties of the plasmid DNA molecule in terms of stability, cost–effectiveness and lack of cold-chain requirement are additional advantages over traditional vaccines and therapeutics. We focus on the current knowledge of autoimmune mechanisms, engineering of DNA vaccines and attempts that have already been made in order to intervene in autoimmune processes. Our experience with a genetic vaccine containing the heat-shock protein gene (hsp65) from mycobacteria is also described.


Clinical & Developmental Immunology | 2011

The Impact of Transcriptomics on the Fight against Tuberculosis: Focus on Biomarkers, BCG Vaccination, and Immunotherapy

Carlos R. Zárate-Bladés; Célio Lopes Silva; Geraldo A. Passos

In 1882 Robert Koch identified Mycobacterium tuberculosis as the causative agent of tuberculosis (TB), a disease as ancient as humanity. Although there has been more than 125 years of scientific effort aimed at understanding the disease, serious problems in TB persist that contribute to the estimated 1/3 of the world population infected with this pathogen. Nonetheless, during the first decade of the 21st century, there were new advances in the fight against TB. The development of high-throughput technologies is one of the major contributors to this advance, because it allows for a global vision of the biological phenomenon. This paper analyzes how transcriptomics are supporting the translation of basic research into therapies by resolving three key issues in the fight against TB: (a) the discovery of biomarkers, (b) the explanation of the variability of protection conferred by BCG vaccination, and (c) the development of new immunotherapeutic strategies to treat TB.


Human Vaccines | 2010

A subunit vaccine based on biodegradable microspheres carrying rHsp65 protein and KLK protects BALB/c mice against tuberculosis infection

Sandra Aparecida dos Santos; Carlos R. Zárate-Bladés; Fabio C. S. Galetti; Izaíra T. Brandão; Ana Paula Masson; Edson Garcia Soares; Ana Paula Ulian Araújo; Célio Lopes Silva

Of the hundreds of new tuberculosis (TB) vaccine candidates, some have therapeutic value in addition to their prophylactic properties. This is the case for the DNA vaccine encoding heat-shock protein 65 (DNAhsp65) from Mycobacterium leprae. However, there are concerns about the use of DNA vaccines in certain populations such as newborns and pregnant women. Thus, the optimization of vaccination strategies that circumvent this limitation is a priority. This study evaluated the efficacy of a single dose subunit vaccine based on recombinant Hsp65 protein against infection with M. tuberculosis H37Rv. The Hsp65 protein in this study was either associated or not with immunostimulants, and was encapsulated in biodegradable PLGA microspheres. Our results demonstrate that the protein was entrapped in microspheres of adequate diameter to be engulfed by phagocytes. Mice vaccinated with a single dose of Hsp65-microspheres or Hsp65+CpG-microspheres developed both humoral and cellular-specific immune responses. However, they did not protect mice against challenge with M. tuberculosis. By contrast, Hsp65+KLK-microspheres induced specific immune responses that reduced bacilli loads and minimized lung parenchyma damage. These data suggest that a subunit vaccine based on recombinant protein Hsp65 is feasible.


Human Vaccines & Immunotherapeutics | 2013

Evaluation of the overall IFN-γ and IL-17 pro-inflammatory responses after DNA therapy of tuberculosis.

Carlos R. Zárate-Bladés; Rodrigo F. Rodrigues; Patricia R. M. Souza; Wendy M. Rios; Luana da Silva Soares; Rogério Silva Rosada; Izaíra T. Brandão; Ana Paula Masson; Elaine M. Floriano; Simone G. Ramos; Célio Lopes Silva

Despite the enormous efforts displayed globally in the fight against tuberculosis, the disease incidence has modified slightly, which has led to a renewed interest in immunotherapy. In general, successful immunotherapeutic candidates against tuberculosis are agents that can trigger strong, specific pro-inflammatory responses, especially of the T-helper (Th) 1 pattern. However, how these pro-inflammatory agents effectively kill the bacteria without eliciting immunopathology is not well understood. We reasoned that, in addition to the specific immune response elicited by immunotherapy, the evaluation of the overall pro-inflammatory responses should provide additional and valuable information that will be useful in avoiding immunopathology. We evaluated the overall IFN-γ and IL-17 pro-inflammatory responses among CD4+, CD8+ and γδ T cells in the lungs of mice that were infected with M. tuberculosis and treated with a DNA vaccine in an immunotherapeutic regimen. Our results demonstrate that mice that effectively combat the pathogen develop a strong, specific Th1 immune response against the therapeutic antigen and have reduced lung inflammation, present in parallel a fine-tuning in the total IFN-γ- and IL-17-mediated immunity in the lungs. This modulation of the total immune response involves reducing the Th17 cell population, augmenting CD8+ T cells that produce IFN-γ and increasing the total γδ T cell frequency. These results stress the importance of a broad evaluation of not only the specific immune response at the time to evaluate new immune interventional strategies against tuberculosis but also non-conventional T cells, such as γδ T lymphocytes.


European Journal of Inflammation | 2009

NO EVIDENCE OF PATHOLOGICAL AUTOIMMUNITY FOLLOWING MYCOBACTERIUM LEPRAE HEAT-SHOCK PROTEIN 65-DNA VACCINATION IN MICE

Deison Soares de Lima; Carlos R. Zárate-Bladés; Patricia R. M. Souza; Ana Paula Favaro Trombone; Rubens R. Santos-Junior; Izaíra T. Brandão; Ana Paula Masson; Vânia Luiza Deperon Bonato; Arlete Am Coelho-Castelo; Alexandrina Sartori; M. Vendramini; E. G. Soares; L. A. Benvenutti; Célio Lopes Silva; V. Coelho

Heat-shock proteins (HSPs) are currently one of the most promising targets for the development of immunotherapy against tumours and autoimmune disorders. This protein family has the capacity to activate or modulate the function of different immune system cells. They induce the activation of monocytes, macrophages and dendritic cells, and contribute to cross-priming, an important mechanism of presentation of exogenous antigen in the context of MHC class I molecules. These various immunological properties of HSP have encouraged their use in several clinical trials. Nevertheless, an important issue regarding these proteins is whether the high homology among HSPs across different species may trigger the breakdown of immune tolerance and induce autoimmune diseases. We have developed a DNA vaccine codifying the Mycobacterium leprae Hsp65 (DNAhsp65), which showed to be highly immunogenic and protective against experimental tuberculosis. Here, we address the question of whether DNAhsp65 immunization could induce pathological autoimmunity in mice. Our results show that DNAhsp65 vaccination induced antibodies that can recognize the human Hsp60 but did not induce harmful effects in 16 different organs analysed by histopathology up to 210 days after vaccination. We also showed that anti-DNA antibodies were not elicited after DNA vaccination. The results are important for the development of both HSP and DNA-based immunomodulatory agents.


PLOS ONE | 2010

Therapeutic Efficacy of Cintredekin Besudotox (IL13-PE38QQR) in Murine Lung Fibrosis Is Unaffected by Immunity to Pseudomonas aeruginosa Exotoxin A

Rogério Silva Rosada; Ana Paula Moreira; Fabiani G. Frantz; Raj K. Puri; Aquilur Rahman; Theodore J. Standiford; Carlos R. Zárate-Bladés; Célio Lopes Silva; Cory M. Hogaboam

Background We have previously explored a therapeutic strategy for specifically targeting the profibrotic activity of IL-13 during experimental pulmonary fibrosis using a fusion protein comprised of human IL-13 and a mutated form of Pseudomonas aeruginosa exotoxin A (IL13-PE) and observed that the intranasal delivery of IL13-PE reduced bleomycin-induced pulmonary fibrosis through its elimination of IL-13-responsive cells in the lung. The aim of the present study was to determine whether the presence of an immune response to P. aeruginosa and/or its exotoxin A (PE) would diminish the anti-fibrotic properties of IL13-PE. Methodology/Principal Findings Fourteen days after P. aeruginosa infection, C57BL/6 mice were injected with bleomycin via the intratracheal route. Other groups of mice received 4 doses of saline or IL13-PE by either intranasal or intraperitoneal application, and were challenged i.t. with bleomycin 28 days later. At day 21 after bleomycin, all mice received either saline vehicle or IL13-PE by the intranasal route and histopatological analyses of whole lung samples were performed at day 28 after bleomycin. Intrapulmonary P. aeruginosa infection promoted a neutralizing IgG2A and IgA antibody response in BALF and serum. Surprisingly, histological analysis showed that a prior P. aeruginosa infection attenuated the development of bleomycin-induced pulmonary fibrosis, which was modestly further attenuated by the intranasal administration of IL13-PE. Although prior intranasal administration of IL13-PE failed to elicit an antibody response, the systemic administration of IL13-PE induced a strong neutralizing antibody response. However, the prior systemic sensitization of mice with IL13-PE did not inhibit the anti-fibrotic effect of IL13-PE in fibrotic mice. Conclusions Thus, IL13-PE therapy in pulmonary fibrosis works regardless of the presence of a humoral immune response to Pseudomonas exotoxin A. Interestingly, a prior infection with P. aeruginosa markedly attenuated the pulmonary fibrotic response suggesting that the immune elicitation by this pathogen exerts anti-fibrotic effects.


PLOS ONE | 2010

A Dynamic Analysis of Tuberculosis Dissemination to Improve Control and Surveillance

Rita Maria Zorzenon dos Santos; Ana Amador; Wayner Vieira de Souza; Maria Fatima P. M. de Albuquerque; Silvina Ponce Dawson; Antonio Ruffino-Netto; Carlos R. Zárate-Bladés; Célio Lopes Silva

Background Detailed analysis of the dynamic interactions among biological, environmental, social, and economic factors that favour the spread of certain diseases is extremely useful for designing effective control strategies. Diseases like tuberculosis that kills somebody every 15 seconds in the world, require methods that take into account the disease dynamics to design truly efficient control and surveillance strategies. The usual and well established statistical approaches provide insights into the cause-effect relationships that favour disease transmission but they only estimate risk areas, spatial or temporal trends. Here we introduce a novel approach that allows figuring out the dynamical behaviour of the disease spreading. This information can subsequently be used to validate mathematical models of the dissemination process from which the underlying mechanisms that are responsible for this spreading could be inferred. Methodology/Principal Findings The method presented here is based on the analysis of the spread of tuberculosis in a Brazilian endemic city during five consecutive years. The detailed analysis of the spatio-temporal correlation of the yearly geo-referenced data, using different characteristic times of the disease evolution, allowed us to trace the temporal path of the aetiological agent, to locate the sources of infection, and to characterize the dynamics of disease spreading. Consequently, the method also allowed for the identification of socio-economic factors that influence the process. Conclusions/Significance The information obtained can contribute to more effective budget allocation, drug distribution and recruitment of human skilled resources, as well as guiding the design of vaccination programs. We propose that this novel strategy can also be applied to the evaluation of other diseases as well as other social processes.

Collaboration


Dive into the Carlos R. Zárate-Bladés's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge