Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carlos Renato Machado is active.

Publication


Featured researches published by Carlos Renato Machado.


Memorias Do Instituto Oswaldo Cruz | 2009

A new consensus for Trypanosoma cruzi intraspecific nomenclature: second revision meeting recommends TcI to TcVI

Bianca Zingales; Sonia G. Andrade; Briones; Da Campbell; Egler Chiari; Ormezinda Celeste Cristo Fernandes; Felipe Guhl; Eliane Lages-Silva; Andrea M. Macedo; Carlos Renato Machado; Michael A. Miles; Aj Romanha; Nancy R. Sturm; Michel Tibayrenc; Alejandro G. Schijman

In an effort to unify the nomenclature of Trypanosoma cruzi, the causative agent of Chagas disease, an updated system was agreed upon at the Second Satellite Meeting. A consensus was reached that T. cruzi strains should be referred to by six discrete typing units (T. cruzi I-VI). The goal of a unified nomenclature is to improve communication within the scientific community involved in T. cruzi research. The justification and implications will be presented in a subsequent detailed report.


Infection, Genetics and Evolution | 2012

The revised Trypanosoma cruzi subspecific nomenclature: Rationale, epidemiological relevance and research applications

Bianca Zingales; Michael A. Miles; David A. Campbell; Michel Tibayrenc; Andrea M. Macedo; Marta M. G. Teixeira; Alejandro G. Schijman; Martin S. Llewellyn; Eliane Lages-Silva; Carlos Renato Machado; Sonia G. Andrade; Nancy R. Sturm

The protozoan Trypanosoma cruzi, its mammalian reservoirs, and vectors have existed in nature for millions of years. The human infection, named Chagas disease, is a major public health problem for Latin America. T. cruzi is genetically highly diverse and the understanding of the population structure of this parasite is critical because of the links to transmission cycles and disease. At present, T. cruzi is partitioned into six discrete typing units (DTUs), TcI-TcVI. Here we focus on the current status of taxonomy-related areas such as population structure, phylogeographical and eco-epidemiological features, and the correlation of DTU with natural and experimental infection. We also summarize methods for DTU genotyping, available for widespread use in endemic areas. For the immediate future multilocus sequence typing is likely to be the gold standard for population studies. We conclude that greater advances in our knowledge on pathogenic and epidemiological features of these parasites are expected in the coming decade through the comparative analysis of the genomes from isolates of various DTUs.


Memorias Do Instituto Oswaldo Cruz | 2004

Trypanosoma cruzi: genetic structure of populations and relevance of genetic variability to the pathogenesis of chagas disease

Andrea M. Macedo; Carlos Renato Machado; Riva P. Oliveira; Sérgio D.J. Pena

Chagas disease, caused by the protozoan Trypanosoma cruzi, has a variable clinical course, ranging from symptomless infection to severe chronic disease with cardiovascular or gastrointestinal involvement or, occasionally, overwhelming acute episodes. The factors influencing this clinical variability have not been elucidated, but it is likely that the genetic variability of both the host and the parasite are of importance. In this work we review the the genetic structure of T. cruzi populations and analyze the importance of genetic variation of the parasite in the pathogenesis of the disease under the light of the histotropic-clonal model.


PLOS Pathogens | 2006

Ancestral Genomes, Sex, and the Population Structure of Trypanosoma cruzi

Jorge Freitas; Luiz Augusto-Pinto; Juliana Ramos Pimenta; Luciana Bastos-Rodrigues; Vanessa F. Gonçalves; Santuza M. R. Teixeira; Egler Chiari; Ângela C.V. Junqueira; Octavio Fernandes; Andrea M. Macedo; Carlos Renato Machado; Sérgio D.J. Pena

Acquisition of detailed knowledge of the structure and evolution of Trypanosoma cruzi populations is essential for control of Chagas disease. We profiled 75 strains of the parasite with five nuclear microsatellite loci, 24Sα RNA genes, and sequence polymorphisms in the mitochondrial cytochrome oxidase subunit II gene. We also used sequences available in GenBank for the mitochondrial genes cytochrome B and NADH dehydrogenase subunit 1. A multidimensional scaling plot (MDS) based in microsatellite data divided the parasites into four clusters corresponding to T. cruzi I (MDS-cluster A), T. cruzi II (MDS-cluster C), a third group of T. cruzi strains (MDS-cluster B), and hybrid strains (MDS-cluster BH). The first two clusters matched respectively mitochondrial clades A and C, while the other two belonged to mitochondrial clade B. The 24Sα rDNA and microsatellite profiling data were combined into multilocus genotypes that were analyzed by the haplotype reconstruction program PHASE. We identified 141 haplotypes that were clearly distributed into three haplogroups (X, Y, and Z). All strains belonging to T. cruzi I (MDS-cluster A) were Z/Z, the T. cruzi II strains (MDS-cluster C) were Y/Y, and those belonging to MDS-cluster B (unclassified T. cruzi) had X/X haplogroup genotypes. The strains grouped in the MDS-cluster BH were X/Y, confirming their hybrid character. Based on these results we propose the following minimal scenario for T. cruzi evolution. In a distant past there were at a minimum three ancestral lineages that we may call, respectively, T. cruzi I, T. cruzi II, and T. cruzi III. At least two hybridization events involving T. cruzi II and T. cruzi III produced evolutionarily viable progeny. In both events, the mitochondrial recipient (as identified by the mitochondrial clade of the hybrid strains) was T. cruzi II and the mitochondrial donor was T. cruzi III.


PLOS ONE | 2009

Virus-host coevolution: common patterns of nucleotide motif usage in Flaviviridae and their hosts.

Francisco P. Lobo; Bruno Eduardo Fernandes Mota; Sérgio D.J. Pena; Vasco Azevedo; Andrea M. Macedo; Andreas Tauch; Carlos Renato Machado; Glória Regina Franco

Virus-host biological interaction is a continuous coevolutionary process involving both host immune system and viral escape mechanisms. Flaviviridae family is composed of fast evolving RNA viruses that infects vertebrate (mammals and birds) and/or invertebrate (ticks and mosquitoes) organisms. These host groups are very distinct life forms separated by a long evolutionary time, so lineage-specific anti-viral mechanisms are likely to have evolved. Flaviviridae viruses which infect a single host lineage would be subjected to specific host-induced pressures and, therefore, selected by them. In this work we compare the genomic evolutionary patterns of Flaviviridae viruses and their hosts in an attempt to uncover coevolutionary processes inducing common features in such disparate groups. Especially, we have analyzed dinucleotide and codon usage patterns in the coding regions of vertebrate and invertebrate organisms as well as in Flaviviridae viruses which specifically infect one or both host types. The two host groups possess very distinctive dinucleotide and codon usage patterns. A pronounced CpG under-representation was found in the vertebrate group, possibly induced by the methylation-deamination process, as well as a prominent TpA decrease. The invertebrate group displayed only a TpA frequency reduction bias. Flaviviridae viruses mimicked host nucleotide motif usage in a host-specific manner. Vertebrate-infecting viruses possessed under-representation of CpG and TpA, and insect-only viruses displayed only a TpA under-representation bias. Single-host Flaviviridae members which persistently infect mammals or insect hosts (Hepacivirus and insect-only Flavivirus, respectively) were found to posses a codon usage profile more similar to that of their hosts than to related Flaviviridae. We demonstrated that vertebrates and mosquitoes genomes are under very distinct lineage-specific constraints, and Flaviviridae viruses which specifically infect these lineages appear to be subject to the same evolutionary pressures that shaped their host coding regions, evidencing the lineage-specific coevolutionary processes between the viral and host groups.


web science | 1996

THI1, A THIAMINE BIOSYNTHETIC GENE IN ARABIDOPSIS THALIANA, COMPLEMENTS BACTERIAL DEFECTS IN DNA REPAIR

Carlos Renato Machado; R. L. Costa de Oliveira; S. Boiteux; Uta Praekelt; Peter A. Meacock; Carlos Frederico Martins Menck

AnArabidopsis thaliana cDNA was isolated by complementation of theEscherichia coli mutant strain BW535 (xth, nfo, nth), which is defective in DNA base excision repair pathways. This cDNA partially complements the methyl methane sulfonate (MMS) sensitive phenotype of BW535. It also partially corrects the UV-sensitive phenothpe ofE. coli AB1886 (uvrA) and restores its ability to reactivate UV-irradiated λ phage. It has an insert of ca. 1.3 kb with an open reading frame of 1047 bp (predicting a protein with a molecular mass of 36 kDa). This cDNA presents a high homology to a stress related gene from two species ofFusarium (sti35) and to genes whose products participate in the thiamine biosynthesis pathway,THI4, fromSaccharomyces cerevisiae andnmt2 fromSchizosaccharomyces pombe. TheArabidopsis predicted polypeptide has homology to several protein motifs: amino-terminal chloroplast transit peptide, dinucleotide binding site, DNA binding and bacterial DNA polymerases. The auxotrophy for thiamine in the yeastthi4::URA3 disruption strain is complemented by theArabidopsis gene. Thus, the cloned gene, namedthi1, is likely to function in the biosynthesis of thiamine in plants. The data presented in this work indicate thatthi1 may also be involved in DNA damage tolerance in plant cells.


Journal of Nucleic Acids | 2010

Overview of DNA Repair in Trypanosoma cruzi, Trypanosoma brucei, and Leishmania major

Danielle Passos-Silva; Matheus Andrade Rajão; Pedro Henrique Nascimento Aguiar; João Pedro Vieira-da-Rocha; Carlos Renato Machado; Carolina Furtado

A wide variety of DNA lesions arise due to environmental agents, normal cellular metabolism, or intrinsic weaknesses in the chemical bonds of DNA. Diverse cellular mechanisms have evolved to maintain genome stability, including mechanisms to repair damaged DNA, to avoid the incorporation of modified nucleotides, and to tolerate lesions (translesion synthesis). Studies of the mechanisms related to DNA metabolism in trypanosomatids have been very limited. Together with recent experimental studies, the genome sequencing of Trypanosoma brucei, Trypanosoma cruzi, and Leishmania major, three related pathogens with different life cycles and disease pathology, has revealed interesting features of the DNA repair mechanism in these protozoan parasites, which will be reviewed here.


Gene | 1998

Cloning of a cDNA from Arabidopsis thaliana homologous to the human XPB gene

Denise T. Ribeiro; Carlos Renato Machado; Renata Maria Augusto da Costa; Uta Praekelt; Marie-Anne Van Sluys; Carlos Frederico Martins Menck

The human gene XPB, defective in xeroderma pigmentosum patients complementation group B, encodes a DNA helicase involved in several DNA metabolic pathways, including DNA repair and transcription. The high conservation of this gene has allowed the cloning of homologs in various species, such as mouse, yeast and Drosophila. Not much information on the molecular basis of nucleotide excision repair in plants is available, but these organisms may have similar mechanisms to other eukaryotes. A homolog of XPB was isolated in Arabidopsis thaliana by using polymerase chain reaction (PCR) with degenerate oligonucleotides based on protein domains which are conserved among several species. Screening of an Arabidopsis cDNA library led to the identification and isolation of a cDNA clone with 2670 bp encoding a predicted protein of 767 amino acids, denoted araXPB. Genomic analysis indicated that this is a nuclear single copy gene in plant cells. Northern blot with the cDNA probe revealed a major transcript which migrated at approx. 2,800 b, in agreement with the size of the cDNA isolated. The araXPB protein shares approximately 50% identical and 70% conserved amino acids with the yeast and human homologs. The plant protein maintains all the functional domains found in the other proteins, including nuclear localization signal, DNA-binding domain and helicase motifs, suggesting that it might also act as part of the RNA transcription apparatus, as well as nucleotide excision repair in plant cells.


PLOS ONE | 2013

Predicting the proteins of angomonas deanei, strigomonas culicis and their respective endosymbionts reveals new aspects of the trypanosomatidae family

Maria Cristina M. Motta; Allan Cezar de Azevedo Martins; Silvana S. Souza; Carolina Moura Costa Catta-Preta; Rosane Silva; Cecilia Coimbra Klein; Luiz Gonzaga Paula de Almeida; Oberdan de Lima Cunha; Luciane Prioli Ciapina; Marcelo Brocchi; Ana Cristina Colabardini; Bruna de Araujo Lima; Carlos Renato Machado; Célia Maria de Almeida Soares; Christian Macagnan Probst; Cláudia Beatriz Afonso de Menezes; Claudia E. Thompson; Daniella Castanheira Bartholomeu; Daniela Fiori Gradia; Daniela Parada Pavoni; Edmundo C. Grisard; Fabiana Fantinatti-Garboggini; Fabricio K. Marchini; Gabriela F. Rodrigues-Luiz; Glauber Wagner; Gustavo H. Goldman; Juliana Lopes Rangel Fietto; Maria Carolina Elias; Maria Helena S. Goldman; Marie-France Sagot

Endosymbiont-bearing trypanosomatids have been considered excellent models for the study of cell evolution because the host protozoan co-evolves with an intracellular bacterium in a mutualistic relationship. Such protozoa inhabit a single invertebrate host during their entire life cycle and exhibit special characteristics that group them in a particular phylogenetic cluster of the Trypanosomatidae family, thus classified as monoxenics. In an effort to better understand such symbiotic association, we used DNA pyrosequencing and a reference-guided assembly to generate reads that predicted 16,960 and 12,162 open reading frames (ORFs) in two symbiont-bearing trypanosomatids, Angomonas deanei (previously named as Crithidia deanei) and Strigomonas culicis (first known as Blastocrithidia culicis), respectively. Identification of each ORF was based primarily on TriTrypDB using tblastn, and each ORF was confirmed by employing getorf from EMBOSS and Newbler 2.6 when necessary. The monoxenic organisms revealed conserved housekeeping functions when compared to other trypanosomatids, especially compared with Leishmania major. However, major differences were found in ORFs corresponding to the cytoskeleton, the kinetoplast, and the paraflagellar structure. The monoxenic organisms also contain a large number of genes for cytosolic calpain-like and surface gp63 metalloproteases and a reduced number of compartmentalized cysteine proteases in comparison to other TriTryp organisms, reflecting adaptations to the presence of the symbiont. The assembled bacterial endosymbiont sequences exhibit a high A+T content with a total of 787 and 769 ORFs for the Angomonas deanei and Strigomonas culicis endosymbionts, respectively, and indicate that these organisms hold a common ancestor related to the Alcaligenaceae family. Importantly, both symbionts contain enzymes that complement essential host cell biosynthetic pathways, such as those for amino acid, lipid and purine/pyrimidine metabolism. These findings increase our understanding of the intricate symbiotic relationship between the bacterium and the trypanosomatid host and provide clues to better understand eukaryotic cell evolution.


PLOS Neglected Tropical Diseases | 2010

Coinfection with Different Trypanosoma cruzi Strains Interferes with the Host Immune Response to Infection

Claudiney Melquíades Rodrigues; Helder Magno Silva Valadares; Amanda Fortes Francisco; Jerusa Marilda Arantes; Camila França Campos; Andréa Teixeira-Carvalho; Olindo Assis Martins-Filho; Márcio Sobreira Silva Araújo; Rosa Maria Esteves Arantes; Egler Chiari; Glória Regina Franco; Carlos Renato Machado; Sérgio D.J. Pena; Ana Maria Caetano Faria; Andrea M. Macedo

A century after the discovery of Trypanosoma cruzi in a child living in Lassance, Minas Gerais, Brazil in 1909, many uncertainties remain with respect to factors determining the pathogenesis of Chagas disease (CD). Herein, we simultaneously investigate the contribution of both host and parasite factors during acute phase of infection in BALB/c mice infected with the JG and/or CL Brener T. cruzi strains. JG single infected mice presented reduced parasitemia and heart parasitism, no mortality, levels of pro-inflammatory mediators (TNF-α, CCL2, IL-6 and IFN-γ) similar to those found among naïve animals and no clinical manifestations of disease. On the other hand, CL Brener single infected mice presented higher parasitemia and heart parasitism, as well as an increased systemic release of pro-inflammatory mediators and higher mortality probably due to a toxic shock-like systemic inflammatory response. Interestingly, coinfection with JG and CL Brener strains resulted in intermediate parasitemia, heart parasitism and mortality. This was accompanied by an increase in the systemic release of IL-10 with a parallel increase in the number of MAC-3+ and CD4+ T spleen cells expressing IL-10. Therefore, the endogenous production of IL-10 elicited by coinfection seems to be crucial to counterregulate the potentially lethal effects triggered by systemic release of pro-inflammatory mediators induced by CL Brener single infection. In conclusion, our results suggest that the composition of the infecting parasite population plays a role in the host response to T. cruzi in determining the severity of the disease in experimentally infected BALB/c mice. The combination of JG and CL Brener was able to trigger both protective inflammatory immunity and regulatory immune mechanisms that attenuate damage caused by inflammation and disease severity in BALB/c mice.

Collaboration


Dive into the Carlos Renato Machado's collaboration.

Top Co-Authors

Avatar

Andrea M. Macedo

Universidade Federal de Minas Gerais

View shared research outputs
Top Co-Authors

Avatar

Glória Regina Franco

Universidade Federal de Minas Gerais

View shared research outputs
Top Co-Authors

Avatar

Sérgio D.J. Pena

Universidade Federal de Minas Gerais

View shared research outputs
Top Co-Authors

Avatar

Santuza M. R. Teixeira

Universidade Federal de Minas Gerais

View shared research outputs
Top Co-Authors

Avatar

Egler Chiari

Universidade Federal de Minas Gerais

View shared research outputs
Top Co-Authors

Avatar

Isabela Cecília Mendes

Universidade Federal de Minas Gerais

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Danielle Passos-Silva

Universidade Federal de Minas Gerais

View shared research outputs
Top Co-Authors

Avatar

Mainá Bitar

Federal University of Rio de Janeiro

View shared research outputs
Top Co-Authors

Avatar

Matheus Andrade Rajão

Universidade Federal de Minas Gerais

View shared research outputs
Researchain Logo
Decentralizing Knowledge