Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carlos Ruiz Cánovas is active.

Publication


Featured researches published by Carlos Ruiz Cánovas.


Science of The Total Environment | 2009

Natural attenuation processes in two water reservoirs receiving acid mine drainage

Aguasanta M. Sarmiento; M. Olías; José Miguel Nieto; Carlos Ruiz Cánovas; Joquín Delgado

Characteristics of water profiles and sulphide formation processes in sediments were studied in two water reservoirs affected by acid mine drainage in order to investigate the mechanisms controlling the physical and chemical processes that, under favourable conditions, act to reduce the toxicity, mobility and concentration of metals and metalloids in the water column. Water columns and pore-waters from sediments were analysed for Fe species, trace elements (As, Cd, Co, Cu, Mn, Ni, Pb, Zn, Cr), sulphide, sulphate and bicarbonate. Inorganic reduced sulphur compounds (acid volatile sulphur, pyrite sulphur and elemental sulphur) and reactive Fe were determined in the sediments. A sequential extraction was also performed. Both reservoirs behave like holomictic and monomictic lakes, with a summer thermal stratification that disappears during winter. pH values between 4 and 7 can be observed along the water columns. Pore-water concentrations of up to 25 mg/l of Fe, 4 mg/l of Al, 1.3 mg/l of Zn, 170 microg/l of Pb, 11 microg/l of As, etc. have been found. The results suggest that toxic elements such as Cu, Zn, Co, Pb, Cr, As, etc. are mainly found in the bioavailable fraction which is the most hazardous for the environment. The calculated degree of sulphidization (DOS) and degree of pyritization (DOP) values indicates that removal of trace elements from anoxic pore-waters occurs by coprecipitation and/or adsorption on newly formed Fe sulphides (framboidal pyrite), attenuating the contamination. However oxidation of the sediments during turnover periods also occurs, which releases toxic elements back into the water column.


Science of The Total Environment | 2013

Metal cycling during sediment early diagenesis in a water reservoir affected by acid mine drainage

Ester Torres; Carlos Ayora; Carlos Ruiz Cánovas; E. García-Robledo; Laura Galván; Aguasanta M. Sarmiento

The discharge of acid mine drainage (AMD) into a reservoir may seriously affect the water quality. To investigate the metal transfer between the water and the sediment, three cores were collected from the Sancho Reservoir (Iberian Pyrite Belt, SW Spain) during different seasons: turnover event; oxic, stratified period; anoxic and under shallow perennially oxic conditions. The cores were sliced in an oxygen-free atmosphere, after which pore water was extracted by centrifugation and analyzed. A sequential extraction was then applied to the sediments to extract the water-soluble, monosulfide, low crystallinity Fe(III)-oxyhydroxide, crystalline Fe(III)-oxide, organic, pyrite and residual phases. The results showed that, despite the acidic chemistry of the water column (pH<4), the reservoir accumulated a high amount of autochthonous organic matter (up to 12 wt.%). Oxygen was consumed in 1mm of sediment due to organic matter and sulfide oxidation. Below the oxic layer, Fe(III) and sulfate reduction peaks developed concomitantly and the resulting Fe(II) and S(II) were removed as sulfides and probably as S linked to organic matter. During the oxic season, schwertmannite precipitated in the water column and was redissolved in the organic-rich sediment, after which iron and arsenic diffused upwards again to the water column. The flux of precipitates was found to be two orders of magnitude higher than the aqueous one, and therefore the sediment acted as a sink for As and Fe. Trace metals (Cu, Zn, Cd, Pb, Ni, Co) and Al always diffused from the reservoir water and were incorporated into the sediments as sulfides and oxyhydroxides, respectively. In spite of the fact that the benthic fluxes estimated for trace metal and Al were much higher than those reported for lake and marine sediments, they only accounted for less than 10% of their total inventory dissolved in the column water.


Science of The Total Environment | 2016

Pollutant flows from a phosphogypsum disposal area to an estuarine environment: An insight from geochemical signatures.

Rafael Pérez-López; Francisco Macías; Carlos Ruiz Cánovas; Aguasanta M. Sarmiento; Silvia María Pérez-Moreno

Phosphogypsum wastes from phosphate fertilizer industries are stockpiled in stacks with high contamination potential. An assessment of the environmental impact, including the use of geochemical tracers such as rare earth elements (REE) and Cl/Br ratios, was carried out in the phosphogypsum stack located at the Estuary of Huelva (SW Spain). Inside the pile, highly polluted acid pore-waters flows up to the edge of the stack, emerging as small fluvial courses, known as edge outflows, which discharge directly into the estuary. The disposal area is divided into four zones; two unrestored zones with surface ponds of industrial process water and two a priori already-restored zones. However, an extensive sampling of edge outflows conducted in the perimeter of the four zones demonstrates the high potential of contamination of the whole stack, including those zones that were supposedly restored. These solutions are characterized by a pH of 1.9 and concentrations of 6100 mg/L for P, 1970 mg/L for S, 600 mg/L for F, 200mg/L for NH4(+), 100mg/L for Fe, 10-30 mg/L for Zn, As and U, and 1-10mg/L for Cr, Cu and Cd. Preliminary restoration actions and those planned for the future prioritize removal of ponded process water and cover of the phosphogypsum with artificial topsoil. These actions presuppose that the ponded process water percolates through the porous medium towards the edge up to reach the estuary. However, geochemical tracers rule out this connection and point to an estuarine origin for these leachates, suggesting a possible tidal-induced leaching of the waste pile in depth. These findings would explain the ineffectiveness of preliminary restoration measures and should be considered for the development of new action plans.


Science of The Total Environment | 2012

Influence of releases from a fresh water reservoir on the hydrochemistry of the Tinto River (SW Spain)

Carlos Ruiz Cánovas; M. Olías; Enric Vázquez-Suñé; Carlos Ayora; José Miguel Nieto

The Tinto River is an extreme case of pollution by acid mine drainage (AMD), with pH values below 3 and high sulphate, metal and metalloid concentrations along its main course. This study evaluates the impact of releases from a freshwater reservoir on the Tinto River, identifying the metal transport mechanisms. This information is needed to understand the water quality evolution in the long term, and involves the comprehension of interactions between AMD sources, freshwaters, particulate matter and sediments. This work proposes a methodology for quantifying the proportions in which the different sources are contributing. The method is based on the mass balance of solutes and accounts for the uncertainty of end-members. The impact of the releases from the Corumbel Reservoir on the hydrochemistry of the Tinto River was significant, accounting up to a 92% of river discharge. These releases provoked a sharp decrease in dissolved metal concentrations, especially for Fe (approximately 1000 fold) due to dilution and precipitation. Cadmium, Zn, Cu, Co, Ni and Al suffered a dilution to a 12-16 fold decrease while Ca, Sr, Na, Pb and Si were less affected (2-4 folds decrease). However, these releases also gave rise to an increase in particulate transport, mainly Fe, As, Cr, Ba, Pb and Ti, due to sediment remobilisation and Fe precipitation. Aluminium, Li, K, Si, Al, Ni and Sr, together with Cu were present in the particulate phase during the discharge peak. The proposed 2-component mixing model revealed the existence of non-conservative behaviour for Al, Ca, Li, Mn, Ni and Si as a consequence of the interactions between the acidic Tinto waters and the clay-rich reservoir sediments during the bottom outlet opening. These results were improved by a 3-component mixing model, introducing a new end-member to account the chemical dissolution of clay-rich sediments by acidic Tinto waters.


Journal of Hazardous Materials | 2017

An anomalous metal-rich phosphogypsum: Characterization and classification according to international regulations

Francisco Macías; Carlos Ruiz Cánovas; Pablo Cruz-Hernández; Sergio Carrero; M.P. Asta; José Miguel Nieto; Rafael Pérez-López

Phosphogypsum is the main waste generated by the phosphate fertilizer industry. Despite the high level of pollutants found in phosphogypsum and the proximity of stacks to cities, there are no specific regulations for the management of this waste. This study addresses this issue by applying to phosphogypsum, from a fertilizer plant in Huelva (SW Spain), the leaching tests proposed by the current European and US environmental regulations for wastes management and classification. Two main conclusions were obtained: 1) the anomalous metal and metalloid concentrations (e.g. As, Fe, Pb, Sb, Mn, V and Cu) and higher mobility observed in the Huelva phosphogypsum compared to other stacks worldwide, and 2) the discrepancies observed between EU and US regulations dealing with hazardousness classification of these materials. This latter finding suggests the need to use complementary assessment protocols to obtain a better characterization and classification of these wastes. An evaluation of the potential risk to the aquatic life according to the US EPA regulation is proposed in this study. The results warn about the acute and chronic effects on the aquatic life of this waste and suggest the adoption of more strict measures for a safe disposal of phosphogypsum stacks.


Science of The Total Environment | 2016

Water acidification trends in a reservoir of the Iberian Pyrite Belt (SW Spain).

Carlos Ruiz Cánovas; M. Olías; Francisco Macías; Ester Torres; E.G. San Miguel; Laura Galván; Carlos Ayora; José-Miguel Nieto

Scarcity of waters is the main limiting factor of economic development in most arid and semi-arid regions worldwide. The construction of reservoirs may be an optimal solution to assure water availability if the drainage area shows low disturbances. This is the quandary of mining areas where economic development relies on water accessibility. Water acidification trends were investigated in the Sancho Reservoir (SW Spain) in the last 20 years. The acidity (pH3-5) and high dissolved metal concentrations (e.g., 4.4 mg/L of Al, 2.1mg/L of Mn, 1.9 mg/L of Zn) observed in the Sancho, together with the large volume stored (between 37 and 55 Mm(3)), makes this reservoir an extreme case of surface water pollution worldwide. A progressive acidification has been observed since 2003, as evidenced by decreasing pH values and increasing dissolved metal concentrations, especially noticeable after 2007. The increase in the net acidity in the reservoir originates from the higher input of metals and acidity due to the rebound effect after the mining closure in 2001. This trend was not detected in the river feeding the reservoir due to its great hydrological and hydrochemical variability, typical of the Mediterranean climate. Chemical analysis and absolute dating of sediments identified a progressive enrichment in S and metals (i.e., Fe, Zn Cu, Ni, Co and Cd) in the upper 20 cm, which reinforce the year 2002/03 as the onset of the acidification of the reservoir. The decrease of pH values from 4-5 to 3-4 occurred later than the increase in sulfate and metals due to pH-buffering by Al. The acid mine drainage (AMD) pressure has caused an increment of dissolved Fe and other metals, as well as a change in the pH buffering role, exerted now by Fe. These processes were simulated by PHREEQC, which confirms that the acidification trend will continue, causing pH values to reach 2.5 if AMD pressure persists.


Water Air and Soil Pollution | 2014

Metal(loid) Attenuation Processes in an Extremely Acidic River: The Rio Tinto (SW Spain)

Carlos Ruiz Cánovas; M. Olías; José Miguel Nieto

This study deals with the hydrogeochemical changes and metal(loid) attenuation processes along the extremely acidic Rio Tinto (SW Spain). The geochemistry of Tinto headwaters is determined by the variability of mining discharges due to different geological, geochemical and hydrological controls. Downstream of the mining area, a decrease in most dissolved element concentrations is recorded. However, not all elements decreased its concentration to the same extent, and even some did not decrease (e.g., Ba and Pb). A group of elements formed by Al, Cd, Co, Cr, Cu, Li, Mg, Mn, Ni and Zn behaved quasi-conservatively; mainly affected by dilution, except at the lower part of the catchment where seem to be affected by sorption/coprecipitation (e.g., Cd, Cu, and Zn) or mineral dissolution processes (e.g., Al, Mg). Iron and As exhibited a non-conservative behaviour due to ochre precipitation and sorption processes, respectively. A group of elements formed by Ca, Na, Sr and Li did not behave conservatively; waters were enriched in these elements by dissolutive reactions of carbonates and aluminosilicates from bedrocks. The behaviour of Pb in the Rio Tinto is complex; values fluctuate along the river course and its solubility may be related to the nature of Fe precipitates.


Science of The Total Environment | 2014

Trace metal partitioning over a tidal cycle in an estuary affected by acid mine drainage (Tinto estuary, SW Spain)

A. Hierro; M. Olías; Carlos Ruiz Cánovas; Julia Martín; J.P. Bolívar

The Tinto River estuary is highly polluted with the acid lixiviates from old sulphide mines. In this work the behaviour of dissolved and particulate trace metals under strong chemical gradients during a tidal cycle is studied. The pH values range from 4.4 with low tide to 6.9 with high tide. Precipitation of Fe and Al is intense during rising tides and As and Pb are almost exclusively found in the particulate matter (PM). Sorption processes are very important in controlling the mobility (and hence bioavailability) of some metals and particularly affect Cu below pH 6. Above pH~6 Cu is desorbed, probably by the formation of Cu(I)-chloride complexes. Although less pronounced than Cu, also Zn desorption above pH 6.5 seems to occur. Mn and Co are affected by sorption processes at pH higher than ca. 6. Cd behaves conservatively and Ni is slightly affected by sorption processes.


Science of The Total Environment | 2013

Assessment of the dissolved pollutant flux of the Odiel River (SW Spain) during a wet period

Laura Galván; M. Olías; J. C. Cerón; Carlos Ruiz Cánovas; Rafael Pérez-López; José Miguel Nieto

The abandoned mining districts of the Iberian Pyrite Belt (IPB, SW Spain) are an extreme source of pollution by acid mine drainage (AMD) to the Tinto and Odiel rivers. The pollutant flux transported by the Odiel River during a high stage period was assessed using concentration-discharge relationships and concentration-conductivity relationships, for the hydrological year 2009/10 (which was especially wet). Both correlations were high (R(2)>0.80) for most of the elements studied. The two methods for flux calculation gave similar results with differences generally lower than 10%. The dissolved contaminant flux transported by the Odiel River just before its mouth mainly includes sulphate (257,534±13,464 t/yr), Al (13,259±1071 t/yr), Zn (4265±242 t/yr), Mn (2532±146 t/yr) and Cu (1738±136 t/yr), and minor amounts of other elements. These findings confirm that, up to our knowledge, the Odiel River can be considered to be the largest contributor of mining-related pollutants to the worlds oceans.


Science of The Total Environment | 2018

Mobility of rare earth elements, yttrium and scandium from a phosphogypsum stack: Environmental and economic implications

Carlos Ruiz Cánovas; Francisco Macías; Rafael Pérez López; José Miguel Nieto

This paper investigates the mobility and fluxes of REE, Y and Sc under weathering conditions from an anomalously metal-rich phosphogypsum stack in SW Spain. The interactions of the phosphogypsum stack with rainfall and organic matter-rich solutions, simulating the weathering processes observed due to its location on salt-marshes, were simulated by leaching tests (e.g. EN 12457-2 and TCLP). Despite the high concentration of REE, Y and Sc contained in the phosphogypsum stack, their mobility during the leaching tests was very low; <0.66% and 1.8% of the total content of these elements were released during both tests. Chemical and mineralogical evidences suggest that phosphate minerals may act as sources of REE and Y in the phosphogypsum stack while fluoride minerals may act as sinks, controlling their mobility. REE fractionation processes were identified in the phosphogypsum stack; a depletion of LREE in the saturated zone was identified due probably to the dissolution of secondary LREE phosphates previously formed during apatite dissolution in the industrial process. Thus, the vadose zone of the stack would preserve the original REE signature of phosphate rocks. On the other hand, an enrichment of MREE in relation to HREE of edge outflows is observed due to the higher influence of estuarine waters on the leaching process of the phosphogypsum stack. Despite the low mobility of REE, Y and Sc in the phosphogypsum, around 104kg/yr of REE and 40kg/yr of Y and Sc are released from the stack to the estuary, which may imply an environmental concern. The information obtained in this study could be used to optimize extraction methods aimed to recover REE, Y and Sc from phosphogypsum, mitigating the pollution to the environment.

Collaboration


Dive into the Carlos Ruiz Cánovas's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Carlos Ayora

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ester Torres

Spanish National Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge