Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carlos Suñé is active.

Publication


Featured researches published by Carlos Suñé.


Virology | 1990

Antigenic homology among coronaviruses related to transmissible gastroenteritis virus.

Carlos Sánchez; Gustavo Jiménez; María D. Laviada; Isabel Correa; Carlos Suñé; María J. Bullido; Fátima Gebauer; Cristian Smerdou; Paul Callebaut; JoséM. Escribano; Luis Enjuanes

Abstract The antigenic homology of 26 coronavirus isolates, of which 22 were antigenically related to transmissible gastroenteritis virus (TGEV), was determined with 42 monoclonal antibodies. Type, group, and interspecies specific epitopes were defined. Two group specific MAbs distinguished the enteric TGEV isolates from the respiratory variants. An antigenic subsite involved in neutralization was conserved in porcine, feline, and canine coronavirus. The classification of the human coronavirus 229E in a taxonomic cluster distinct from TGEV group is suggested.


Virology | 1992

Genetic evolution and tropism of transmissible gastroenteritis coronaviruses

Carlos Sánchez; Fátima Gebauer; Carlos Suñé; Ana Méndez; Joaquín Dopazo; Luis Enjuanes

Abstract Transmissible gastroenteritis virus (TGEV) is an enteropathogenic coronavirus isolated for the first time in 1946. Nonenteropathogenic porcine respiratory coronaviruses (PRCVs) have been derived from TGEV. The genetic relationship among six European PRCVs and five coronaviruses of the TGEV antigenic cluster has been determined based on their RNA sequences. The S protein of six PRCVs have an identical deletion of 224 amino acids starting at position 21. The deleted area includes the antigenic sites C and B of TGEV S glycoprotein. Interestingly, two viruses (NEB72 and TOY56) with respiratory tropism have S proteins with a size similar to the enteric viruses. NEB72 and TOY56 viruses have in the S protein 2 and 15 specific amino acid differences with the enteric viruses. Four of the residues changed (aa 219 of NEB72 isolate and as 92, 94, and 218 of TOY56) are located within the deletion present in the PRCVs and may be involved in the receptor binding site (RBS) conferring enteric tropism to TGEVs. A second RBS used by the virus to infect ST cells might be located in a conserved area between sites A and D of the S glycoprotein, since monoclonal antibodies specific for these sites inhibit the binding of the virus to ST cells. An evolutionary tree relating 13 enteric and respiratory isolates has been proposed. According to this tree, a main virus lineage evolved from a recent progenitor virus which was circulating around 1941. From this, secondary lineages originated PUR46, NEB72, TOY56, MIL65, BR170, and the PRCVs, in this order. Least squares estimation of the origin of TGEV-related coronaviruses showed a significant constancy in the fixation of mutations with time, that is, the existence of a well-defined molecular clock. A mutation fixation rate of 7 ± 2 × 10−4 nucleotide substitutions per site and per year was calculated for TGEV-related viruses. This rate falls in the range reported for other RNA viruses. Point mutations and probably recombination events have occurred during TGEV evolution.


Molecular and Cellular Biology | 1997

CA150, a nuclear protein associated with the RNA polymerase II holoenzyme, is involved in Tat-activated human immunodeficiency virus type 1 transcription.

Carlos Suñé; Takuma Hayashi; Yi Liu; William S. Lane; Richard A. Young; Mariano A. Garcia-Blanco

Maximal human immunodeficiency virus type 1 (HIV-1) gene expression requires specific cellular factors in addition to the virus-encoded trans-activator protein Tat and the RNA element TAR. We developed a functional assay, based on transcriptional activation in vitro, to identify these cellular factors. Here, we describe the purification and molecular cloning of CA150, a nuclear protein that is associated with the human RNA polymerase II holoenzyme and is involved in Tat-dependent HIV-1 transcriptional activation. The sequence of CA150 contains an extensive glutamine- and alanine-rich repeat that is found in transcriptional modulators such as GAL11 and SSN6 in Saccharomyces cerevisiae and Zeste in Drosophila melanogaster. Immunodepletion of CA150 abolished Tat trans activation in vitro. Moreover, overexpression of a mutant CA150 protein specifically and dramatically decreased Tat-mediated activation of the HIV-1 promoter in vivo, strongly suggesting a role for CA150 in HIV-1 gene regulation. Immunoprecipitation experiments demonstrated that both CA150 and Tat associate with the RNA polymerase II holoenzyme. Furthermore, we found that functional Tat associates with the holoenzyme whereas activation-deficient Tat mutants do not. Thus, we propose that Tat action is transduced via an RNA polymerase II holoenzyme that contains CA150.


Virus Research | 1988

Antigenic structure of the E2 glycoprotein from transmissible gastroenteritis coronavirus

Isabel Correa; Gustavo Jiménez; Carlos Suñé; María J. Bullido; Luis Enjuanes

Abstract The antigenic structure of transmissible gastroenteritis (TGE) virus E2 glycoprotein has been defined at three levels: antigenic sites, antigenic subsites and epitopes. Four antigenic sites (A, B, C and D) were defined by competitive radioimmunoassay (RIA) using monoclonal antibodies (MAbs) selected from 9 fusions. About 20% (197) of the hybridomas specific for TGE virus produced neutralizing MAbs specific for site A, which was one of the antigenically dominant determinants. Site A was differentiated in three antigenic subsites: a, b and c, by characterization of 11 MAb resistant (mar) mutants, that were defined by 8, 3, and 3 MAbs, respectively. These subsites were further subdivided in epitopes. A total of 11 epitopes were defined in E2 glycoprotein, eight of which were critical for virus neutralization. Neutralizing MAbs were obtained only when native virus was used to immunize mice, although to produce hybridomas mice immunizations were made with antigen in the native, denatured, or mixtures of native and denatured form. All neutralizing MAbs reacted to conformational epitopes. The antigenic structure of the E2-glycoprotein has been defined with murine MAbs, but the antigenic sites were relevant in the swine, the natural host of the virus, because porcine sera reacted against these sites. MAbs specific for TGE virus site C reacted to non-immune porcine sera. This reactivity was not directed against porcine immunoglobulins. These results indicated that TGE virus contains epitope(s) also present in some non-immunoglobulin component of porcine serum.


Journal of General Virology | 1990

Localization of antigenic sites of the E2 glycoprotein of transmissible gastroenteritis coronavirus.

Isabel Correa; Fátima Gebauer; María J. Bullido; Carlos Suñé; Marc F. D. Baay; Kornelisje A. Zwaagstra; W. P. A. Posthumus; Johannes A. Lenstra; Luis Enjuanes

Four antigenic sites of the E2 glycoprotein of transmissible gastroenteritis virus were defined by competitive radioimmunoassays of monoclonal antibodies (MAbs). Here, we describe the localization of these sites by testing the antigenicity of protein fragments and prokaryotic expression products of E2 gene fragments, and by sequencing of MAb-resistant (mar) mutants. Partial proteolysis of purified E2 protein allowed the isolation of a 28K fragment recognized by both site A- and site C-specific MAbs. An antiserum against this fragment bound to a synthetic peptide containing residues 1 to 18 and to an expression product containing residues 1 to 325. The same expression product was recognized by site C-specific MAbs. These data indicate that residues within the sequence 1 to 325 contribute to site C and possibly also to site A. Sequencing of mar mutants that escaped neutralization by site A-specific MAbs indicated that residues 538 and 543 also belong to site A. The binding of site-specific MAbs to expression products led directly to the localization of sites B and D, between residues 1 to 325 and 379 to 529, respectively. The first 37% of the polypeptide chain of E2 appears to be more immunogenic than the rest of the sequence.


Molecular and Cellular Biology | 1999

Transcriptional Cofactor CA150 Regulates RNA Polymerase II Elongation in a TATA-Box-Dependent Manner

Carlos Suñé; Mariano A. Garcia-Blanco

ABSTRACT Tat protein strongly activates transcription from the human immunodeficiency virus type 1 (HIV-1) long terminal repeat (LTR) by enhancing the elongation efficiency of RNA polymerase II complexes. Tat-mediated transcriptional activation requires cellular cofactors and specific cis-acting elements within the HIV-1 promoter, among them a functional TATA box. Here, we have investigated the mechanism by which one of these cofactors, termed CA150, regulates HIV-1 transcription in vivo. We present a series of functional assays that demonstrate that the regulation of the HIV-1 LTR by CA150 has the same functional requirements as the activation by Tat. We found that CA150 affects elongation of transcription complexes assembled on the HIV-1 promoter in a TATA-box-dependent manner. We discuss the data in terms of the involvement of CA150 in the regulation of Tat-activated HIV-1 gene expression. In addition, we also provide evidence suggesting a role for CA150 in the regulation of cellular transcriptional processes.


Virology | 1990

Mechanisms of transmissible gastroenteritis coronavirus neutralization

Carlos Suñé; Gustavo Jiménez; Isabel Correa; María J. Bullido; Fátima Gebauer; Cristian Smerdou; Luis Enjuanes

Abstract Transmissible gastroenteritis virus (TGEV) was neutralized more than 109-fold with antibodies of a single specificity [monoclonal antibodies (MAbs)]. Most of the virus was neutralized in the first 2–3 min of a reversible reaction, which was followed by a second phase with a decreased neutralization rate and, in some cases, by a persistent fraction, which was a function of the MAb and of the antibody-to-virus ratio. Neutralization of TGEV is a specific event that requires the location of the epitope involved in the neutralization in the appropriate structural context, which is present in the wild-type virus but not in certain MAb escaping mutants. In neutralization of TGEV by binary combinations of MAbs specific for the same or for different antigenic sites, either no cooperation or a synergistic effect, respectively, was observed. Mechanisms of TGEV neutralization by MAbs were characterized at high, intermediate, and low antibody-to-virus ratios. Under these conditions, mainly three steps of the replication cycle were inhibited: binding of virus to the cell, internalization, and a step that takes place after internalization. In addition, virus aggregation could be responsible for the neutralization of 10 to 20% of virus infectivity.


Molecular and Cellular Biology | 2006

Human Transcription Elongation Factor CA150 Localizes to Splicing Factor-Rich Nuclear Speckles and Assembles Transcription and Splicing Components into Complexes through Its Amino and Carboxyl Regions

Miguel Sánchez-Álvarez; Aaron C. Goldstrohm; Mariano A. Garcia-Blanco; Carlos Suñé

ABSTRACT The human transcription elongation factor CA150 contains three N-terminal WW domains and six consecutive FF domains. WW and FF domains, versatile modules that mediate protein-protein interactions, are found in nuclear proteins involved in transcription and splicing. CA150 interacts with the splicing factor SF1 and with the phosphorylated C-terminal repeat domain (CTD) of RNA polymerase II (RNAPII) through its WW and FF domains, respectively. WW and FF domains may, therefore, serve to link transcription and splicing components and play a role in coupling transcription and splicing in vivo. In the study presented here, we investigated the subcellular localization and association of CA150 with factors involved in pre-mRNA transcriptional elongation and splicing. Endogenous CA150 colocalized with nuclear speckles, and this was not affected either by inhibition of cellular transcription or by RNAPII CTD phosphorylation. FF domains are essential for the colocalization to speckles, while WW domains are not required for colocalization. We also performed biochemical assays to understand the role of WW and FF domains in mediating the assembly of transcription and splicing components into higher-order complexes. Transcription and splicing components bound to a region in the amino-terminal part of CA150 that contains the three WW domains; however, we identified a region of the C-terminal FF domains that was also critical. Our results suggest that sequences located at both the amino and carboxyl regions of CA150 are required to assemble transcription/splicing complexes, which may be involved in the coupling of those processes.


Gene | 2012

Functional coupling of transcription and splicing

Marta Montes; Soraya Becerra; Miguel Sánchez-Álvarez; Carlos Suñé

The tightly regulated process of precursor messenger RNA (pre-mRNA) alternative splicing is a key mechanism to increase the number and complexity of proteins encoded by the genome. Evidence gathered in recent years has established that transcription and splicing are physically and functionally coupled and that this coupling may be an essential aspect of the regulation of splicing and alternative splicing. Recent advances in our understanding of transcription and of splicing regulation have uncovered the multiple interactions between components from both types of machinery. These interactions help to explain the functional coupling of RNAPII transcription and pre-mRNA alternative splicing for efficient and regulated gene expression at the molecular level. Recent technological advances, in addition to novel cell and molecular biology approaches, have led to the development of new tools for addressing mechanistic questions to achieve an integrated and global understanding of the functional coupling of RNAPII transcription and pre-mRNA alternative splicing. Here, we review major milestones and insights into RNA polymerase II transcription and pre-mRNA alternative splicing as well as new concepts and challenges that have arisen from multiple genome-wide approaches and analyses at the single-cell resolution.


Virology | 1995

Induction of Antibodies Protecting against Transmissible Gastroenteritis Coronavirus (TGEV) by Recombinant Adenovirus Expressing TGEV Spike Protein

Juan Maria Torres; Carlos Sánchez; Carlos Suñé; Cristian Smerdou; Ludvik Prevec; Frank L. Graham; Luis Enjuanes

Abstract Ten recombinant adenoviruses expressing either fragments of 1135, 1587, or 3329 nt or the full-length spike gene of transmissible gastroenteritis coronavirus (TGEV) have been constructed. These recombinants produce S polypeptides with apparent molecular masses of 68, 86, 135, and 200 kDa, respectively. Expression of the recombinant antigen driven by Ad5 promoters was inhibited by the insertion of an exogenous SV-40 promoter. Most of the recombinant antigens remain intracytoplasmic in infected cells. All the recombinant-directed expression products contain functional antigenic sites C and B (Gebaueret al.,1991,Virology183, 225–238). The recombinant antigen of 135 kDa and that of 200 kDa, which represents the whole spike protein, also contain antigenic sites D and A, which have previously been shown to be the major inducers of TGEV-neutralizing antibodies. Interestingly, here we show that recombinant S protein fragments expressing only sites C and B also induced TGEV-neutralizing antibodies. The chimeric Ad5–TGEV recombinants elicited lactogenic immunity in hamsters, including the production of TGEV-neutralizing antibodies. The antisera induced in swine by the Ad5 recombinants expressing the amino-terminal 26% of the spike protein (containing sites C and B) or the full-length spike protein, when mixed with a lethal dose of virus prior to administration to susceptible piglets, delayed or completely prevented the induction of symptoms of disease, respectively.

Collaboration


Dive into the Carlos Suñé's collaboration.

Top Co-Authors

Avatar

Cristina Hernández-Munain

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Luis Enjuanes

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Mariano A. Garcia-Blanco

University of Texas Medical Branch

View shared research outputs
Top Co-Authors

Avatar

Cristian Smerdou

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Marta Montes

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Noemí Sánchez-Hernández

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

Carlos Sánchez

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Isabel Correa

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar

María J. Bullido

Spanish National Research Council

View shared research outputs
Researchain Logo
Decentralizing Knowledge