Carlos W. Bertoncini
Max Planck Society
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Carlos W. Bertoncini.
Journal of the American Chemical Society | 2008
Andres Binolfi; Gonzalo R. Lamberto; Rosario Durán; Liliana Quintanar; Carlos W. Bertoncini; José M. Souza; Carlos Cerveñansky; Markus Zweckstetter; Christian Griesinger; Claudio O. Fernández
The aggregation of alpha-synuclein (AS) is a critical step in the etiology of Parkinsons disease (PD) and other neurodegenerative synucleinopathies. Protein-metal interactions play a critical role in AS aggregation and might represent the link between the pathological processes of protein aggregation and oxidative damage. Our previous studies established a hierarchy in AS-metal ion interactions, where Cu(II) binds specifically to the protein and triggers its aggregation under conditions that might be relevant for the development of PD. In this work, we have addressed unresolved structural details related to the binding specificity of Cu(II) through the design of site-directed and domain-truncated mutants of AS and by the characterization of the metal-binding features of its natural homologue beta-synuclein (BS). The structural properties of the Cu(II) complexes were determined by the combined application of nuclear magnetic resonance, electron paramagnetic resonance, UV-vis, circular dichroism spectroscopy, and matrix-assisted laser desorption ionization mass spectrometry (MALDI MS). Two independent, noninteracting copper-binding sites with significantly different affinities for the metal ion were detected in the N-terminal regions of AS and BS. MALDI MS provided unique evidence for the direct involvement of Met1 as the primary anchoring residue for Cu(II) in both proteins. Comparative spectroscopic analysis of the two proteins allowed us to deconvolute the Cu(II) binding modes and unequivocally assign the higher-affinity site to the N-terminal amino group of Met1 and the lower-affinity site to the imidazol ring of the sole His residue. Through the use of competitive chelators, the affinity of the first equivalent of bound Cu(II) was accurately determined to be in the submicromolar range for both AS and BS. Our results prove that Cu(II) binding in the C-terminal region of synucleins represents a nonspecific, very low affinity process. These new insights into the bioinorganic chemistry of PD are central to an understanding of the role of Cu(II) in the fibrillization process of AS and have implications for the molecular mechanism by which BS might inhibit AS amyloid assembly.
Nature Methods | 2007
M. J. Roberti; Carlos W. Bertoncini; Reinhard Klement; Elizabeth A. Jares-Erijman; Thomas M. Jovin
α-synuclein is a major component of intraneuronal protein aggregates constituting a distinctive feature of Parkinson disease. To date, fluorescence imaging of dynamic processes leading to such amyloid deposits in living cells has not been feasible. To address this need, we generated a recombinant α-synuclein (α-synuclein-C4) bearing a tetracysteine target for fluorogenic biarsenical compounds. The biophysical, biochemical and aggregation properties of α-synuclein-C4 matched those of the wild-type protein in vitro and in living cells. We observed aggregation of α-synuclein-C4 transfected or microinjected into cells, particularly under oxidative stress conditions. Fluorescence resonance energy transfer (FRET) between FlAsH and ReAsH confirmed the close association of fibrillized α-synuclein-C4 molecules. α-synuclein-C4 offers the means for directly probing amyloid formation and interactions of α-synuclein with other proteins in living cells, the response to cellular stress and screening drugs for Parkinson disease.
Analyst | 2008
Emil Paleček; Veronika Ostatná; Michal Masařík; Carlos W. Bertoncini; Thomas M. Jovin
Parkinsons disease (PD) is associated with the formation and deposition of amyloid fibrils of the protein α-synuclein (AS). It has been proposed that oligomeric intermediates on the pathway to fibrilization rather than the fibrils themselves are the pathogenic agents of PD, but efficient methods for their detection are lacking. We have studied the interfacial properties of wild-type AS and the course of its aggregation in vitro using electrochemical analysis and dynamic light scattering. The oxidation signals of tyrosine residues of AS at carbon electrodes and the ability of fibrils to adsorb and catalyze hydrogen evolution at hanging mercury drop electrodes (HMDEs) decreased during incubation. HMDEs were particularly sensitive to pre-aggregation changes in AS. Already after 1 h of a standard aggregation assayin vitro (stirring at 37 °C), the electrocatalytic peak H increased greatly and shifted to less negative potentials. Between 3 and 9 h of incubation, an interval during which dynamic light scattering indicated AS oligomerization, peak H diminished and shifted to more negative potentials, and AS adsorbability decreased. We tentatively attribute the very early changes in the interfacial behavior of the protein after the first few hours of incubation to protein destabilization with disruption of long-range interactions. The subsequent changes can be related to the onset of oligomerization. Our results demonstrate the utility of electrochemical methods as new and simple tools for the investigation of amyloid formation.
Journal of Biological Chemistry | 2011
C. R. Lamberto; V. Torres-Monserrat; Carlos W. Bertoncini; X. Salvatella; Markus Zweckstetter; Christian Griesinger; Claudio O. Fernández
The fibrillation of amyloidogenic proteins is a critical step in the etiology of neurodegenerative disorders such as Alzheimer and Parkinson diseases. There is major interest in the therapeutic intervention on such aberrant aggregation phenomena, and the utilization of polyaromatic scaffolds has lately received considerable attention. In this regard, the molecular and structural basis of the anti-amyloidogenicity of polyaromatic compounds, required to evolve this molecular scaffold toward therapeutic drugs, is not known in detail. We present here biophysical and biochemical studies that have enabled us to characterize the interaction of metal-substituted, tetrasulfonated phthalocyanines (PcTS) with α-synuclein (AS), the major protein component of amyloid-like deposits in Parkinson disease. The inhibitory activity of the assayed compounds on AS amyloid fibril formation decreases in the order PcTS[Ni(II)] ∼ PcTS > PcTS[Zn(II)] ≫ PcTS[Al(III)] ≈ 0. Using NMR and electronic absorption spectroscopies we demonstrated conclusively that the differences in binding capacity and anti-amyloid activity of phthalocyanines on AS are attributed to their relative ability to self-stack through π-π interactions, modulated by the nature of the metal ion bound at the molecule. Low order stacked aggregates of phthalocyanines were identified as the active amyloid inhibitory species, whose effects are mediated by residue specific interactions. Such sequence-specific anti-amyloid behavior of self-stacked phthalocyanines contrasts strongly with promiscuous amyloid inhibitors with self-association capabilities that act via nonspecific sequestration of AS molecules. The new findings reported here constitute an important contribution for future drug discovery efforts targeting amyloid formation.
Proceedings of the National Academy of Sciences of the United States of America | 2005
Carlos W. Bertoncini; Young-Sang Jung; Claudio O. Fernández; Wolfgang Hoyer; Christian Griesinger; Thomas M. Jovin; Markus Zweckstetter
Proceedings of the National Academy of Sciences of the United States of America | 2005
Rodolfo M. Rasia; Carlos W. Bertoncini; Derek Marsh; Wolfgang Hoyer; Dmitry I. Cherny; Markus Zweckstetter; Christian Griesinger; Thomas M. Jovin; Claudio O. Fernández
Journal of the American Chemical Society | 2006
Andres Binolfi; Rodolfo M. Rasia; Carlos W. Bertoncini; Marcelo Ceolín; Markus Zweckstetter; Christian Griesinger; Thomas M. Jovin; Claudio O. Fernández
Journal of the American Chemical Society | 2005
Pau Bernadó; Carlos W. Bertoncini; Christian Griesinger; and Markus Zweckstetter; Martin Blackledge
Journal of Biological Chemistry | 2005
Carlos W. Bertoncini; Claudio O. Fernández; Christian Griesinger; Thomas M. Jovin; Markus Zweckstetter
Journal of Molecular Biology | 2007
Carlos W. Bertoncini; Rodolfo M. Rasia; Gonzalo R. Lamberto; Andres Binolfi; Markus Zweckstetter; Christian Griesinger; Claudio O. Fernández