Carlton R. Cooper
University of Delaware
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Carlton R. Cooper.
Cancer | 2003
Carlton R. Cooper; Christopher H. Chay; James D. Gendernalik; Hyung-Lae Lee; Jasmine Bhatia; Russell S. Taichman; Laurie K. McCauley; Evan T. Keller; Kenneth J. Pienta
Prostate carcinoma (PC) frequently metastasizes to bone, where it causes significant morbidity and mortality. Stromal elements in the primary and metastatic target organs are important mediators of tumor cell intravasation, chemoattraction, adhesion to target organ microvascular endothelium, extravasation, and growth at the metastatic site.
Cancer and Metastasis Reviews | 2001
Evan T. Keller; Jian Zhang; Carlton R. Cooper; Peter C. Smith; Laurie K. McCauley; Kenneth J. Pienta; Russell S. Taichman
The majority of men with progressive prostate cancer develop metastases with the skeleton being the most prevalent metastatic site. Unlike many other tumors that metastasize to bone and form osteolytic lesions, prostate carcinomas form osteoblastic lesions. However, histological evaluation of these lesions reveals the presence of underlying osteoclastic activity. These lesions are painful, resulting in diminished quality of life of the patient. There is emerging evidence that prostate carcinomas establish and thrive in the skeleton due to cross-talk between the bone microenvironment and tumor cells. Bone provides chemotactic factors, adhesion factors, and growth factors that allow the prostate carcinoma cells to target and proliferate in the skeleton. The prostate carcinoma cells reciprocate through production of osteoblastic and osteolytic factors that modulate bone remodeling. The prostate carcinoma-induced osteolysis promotes release of the many growth factors within the bone extracellular matrix thus further enhancing the progression of the metastases. This review focuses on the interaction between the bone and the prostate carcinoma cells that allow for development and progression of prostate carcinoma skeletal metastases.
Clinical & Experimental Metastasis | 2008
Fayth L. Miles; Freddie Pruitt; Kenneth L. van Golen; Carlton R. Cooper
In order for cancer cells to successfully colonize a metastatic site, they must detach from the primary tumor using extracellular matrix-degrading proteases, intravasate and survive in the circulation, evade the immune response, and extravasate the vasculature to invade the target tissue parenchyma, where metastatic foci are established. Though many of the steps of metastasis are widely studied, the precise cellular interactions and molecular alterations associated with extravasation are unknown, and further study is needed to elucidate the mechanisms inherent to this process. Studies of leukocytes localized to inflamed tissue during the immune response may be used to elucidate the process of cancer extravasation, since leukocyte diapedesis through the vasculature involves critical adhesive interactions with endothelial cells, and both leukocytes and cancer cells express similar surface receptors capable of binding endothelial adhesion molecules. Thus, leukocyte extravasation during the inflammatory response has provided a model for transendothelial migration (TEM) of cancer cells. Leukocyte extravasation is characterized by a process whereby rolling mediated by cytokine-activated endothelial selectins is followed by firmer adhesions with β1 and β2 integrin subunits to an activated endothelium and subsequent diapedesis, which most likely involves activation of Rho GTPases, regulators of cytoskeletal rearrangements and motility. It is controversial whether such selectin-mediated rolling is necessary for TEM of cancer cells. However, it has been established that similar stable adhesions between tumor and endothelial cells precede cancer cell transmigration through the endothelium. Additionally, there is support for the preferential attachment of tumor cells to the endothelium and, accordingly, site-specific metastasis of cancer cells. Rho GTPases are critical to TEM of cancer cells as well, and some progress has been made in understanding the specific roles of the Rho GTPase family, though much is still unknown. As the mechanisms of cancer TEM are elucidated, new approaches to study and target metastasis may be utilized and developed.
Reproductive Biology and Endocrinology | 2004
Delisha A Stewart; Carlton R. Cooper; Robert A. Sikes
Prostate cancer (PCa) is no exception to the multi-step process of metastasis. As PCa progresses, changes occur within the microenvironments of both the malignant cells and their targeted site of metastasis, enabling the necessary responses that result in successful translocation. The majority of patients with progressing prostate cancers develop skeletal metastases. Despite advancing efforts in early detection and management, there remains no effective, long-term cure for metastatic PCa. Therefore, the elucidation of the mechanism of PCa metastasis and preferential establishment of lesions in bone is an intensive area of investigation that promises to generate new targets for therapeutic intervention. This review will survey what is currently know concerning PCa interaction with the extracellular matrix (ECM) and the roles of factors within the tumor and ECM microenvironments that contribute to metastasis. These will be discussed within the context of changes in expression and functional heterodimerization patterns of integrins, changes in ECM expression and reorganization by proteases facilitating invasion. In this context we also provide a brief summary of how growth factors (GFs), cytokines and regulatory signaling pathways favor PCa metastasis to bone.
The Prostate | 2000
Ronald A. Pacis; Mary Josephine Pilat; Kenneth J. Pienta; Kirk J. Wojno; Avraham Raz; Victor Hogan; Carlton R. Cooper
Galectin‐3 is a carbohydrate‐binding protein whose level of expression has been shown to be correlated with metastatic potential in a number of different tumor types. The purpose of this investigation was to examine galectin‐3 expression in several tumorigenic and nontumorigenic prostate cell lines and prostate tissue samples.
Urology | 2002
Christopher H. Chay; Carlton R. Cooper; James D. Gendernalik; Saravana M. Dhanasekaran; Arul M. Chinnaiyan; Mark A. Rubin; Alvin H. Schmaier; Kenneth J. Pienta
OBJECTIVES To identify genes important in prostate cancer metastatic to bone. Bone-specific metastasis is a common feature of prostate cancer and a significant cause of morbidity. METHODS To identify factors involved in organ-specific metastasis, we used cDNA microarray analysis to compare a bone-derived cell line, VCaP, with a soft tissue-derived cell line, DuCaP. Both cell lines were derived from the same patient and spontaneously passaged. RESULTS Forty-five genes were differentially expressed, and only seven of these also had increased expression in VCaP compared with normal prostatic tissue. Of these, protease-activated receptor 1 (PAR1) was verified as having increased expression by reverse transcriptase-polymerase chain reaction and Northern blot analysis, as well as by immunohistochemistry. PAR1 expression in a panel of prostate cancer cell lines demonstrated increased expression in those cell lines derived from bone metastases. Alpha-thrombin stimulation of the VCaP cells produced a dose-dependent mobilization of intracellular calcium compared with DuCaP, suggesting that PAR1 expressed on the VCaP prostate cancer cell line is functional. CONCLUSIONS These data indicate that a functional PAR1 is expressed on prostate cancer cell lines. The prostate cancer cell lines expressing PAR1 appear to have an association with increased bone metastases.
Endocrine-related Cancer | 2010
Lei Gu; Paraskevi Vogiatzi; Martin Puhr; Ayush Dagvadorj; Jacqueline Lutz; Amy Ryder; Sankar Addya; Paolo Fortina; Carlton R. Cooper; Benjamin E. Leiby; Abhijit Dasgupta; Terry Hyslop; Lukas Bubendorf; Kalle Alanen; Tuomas Mirtti; Marja T. Nevalainen
There are no effective therapies for disseminated prostate cancer. Constitutive activation of Stat5 in prostate cancer is associated with cancer lesions of high histological grade. We have shown that Stat5 is activated in 61% of distant metastases of clinical prostate cancer. Active Stat5 increased metastases formation of prostate cancer cells in nude mice by 11-fold in an experimental metastases assay. Active Stat5 promoted migration and invasion of prostate cancer cells, and induced rearrangement of the microtubule network. Active Stat5 expression was associated with decreased cell surface E-cadherin levels, while heterotypic adhesion of prostate cancer cells to endothelial cells was stimulated by active Stat5. Activation of Stat5 and Stat5-induced binding of prostate cancer cells to endothelial cells were decreased by inhibition of Src but not of Jak2. Gene expression profiling indicated that 21% of Stat5-regulated genes in prostate cancer cells were related to metastases, while 7.9% were related to proliferation and 3.9% to apoptosis. The work presented here provides the first evidence of Stat5 involvement in the induction of metastatic behavior of human prostate cancer cells in vitro and in vivo. Stat5 may provide a therapeutic target protein for disseminated prostate cancer.
Clinical & Experimental Metastasis | 2008
Linda Sequeira; Cara W. Dubyk; Tracy A. Riesenberger; Carlton R. Cooper; Kenneth L. van Golen
Background The Rho GTPases comprise one of the eight subfamilies of the Ras superfamily of monomeric GTP-binding proteins and are involved in cytoskeletal organization. Previously, using a dominant negative construct, we demonstrated a role for RhoC GTPase in conferring invasive capabilities to PC-3 human prostate cancer cells. Further, we demonstrated that inactivation of RhoC led to morphological changes commensurate with epithelial to mesenchymal transition (EMT) and was accompanied by increased random, linear motility and decreased directed migration and invasion. EMT was related positively to sustained expression and activity of Rac GTPase. In the current study we analyze the individual roles of RhoA, RhoC and Rac1 GTPases in PC-3 cell directed migration, invasion and tumor cell diapedesis across a human bone marrow endothelial cell layer in vitro. Results Use of specific shRNA directed against RhoA, RhoC or Rac1 GTPases demonstrated a role for each protein in maintaining cell morphology. Furthermore, we demonstrate that RhoC expression and activation is required for directed migration and invasion, while Rac1 expression and activation is required for tumor cell diapedesis. Inhibition of RhoA expression produced a slight increase in invasion and tumor cell diapedesis. Conclusions Individual Rho GTPases are required for critical aspects of migration, invasion and tumor cell diapedesis. These data suggest that coordinated activation of individual Rho proteins is required for cells to successfully complete the extravasation process; a key step in distant metastasis.
Veterinary Microbiology | 1994
Karen S. Coats; Stephen B. Pruett; Jerry W. Nash; Carlton R. Cooper
Bovine immunodeficiency virus (BIV), a lentivirus, was originally derived from a Holstein cow with persistent lymphocytosis and severe wasting. The virus is known to occur sporadically throughout the United States and perhaps across the globe, but epidemiological data concerning the incidence of BIV are meager and the virus was previously unreported in Mississippi animals. This study examined the seroepidemiology of BIV infection from two Mississippi dairy herds (Coastal Plains and MSU). Serology revealed a 38% incidence of BIV infection in Coastal Plains animals and a 58% incidence in MSU animals. A cumulative BIV seroprevalence of 50% was found in the Mississippi animals, and BIV seroprevalence increased with increasing age of the animals. Peripheral blood leukocytes of age matched BIV seropositive and seronegative animals were enumerated to assess any effect of BIV infection on leukocyte populations. No significant differences were found in total leukocyte populations or leukocyte subpopulations between BIV seropositive or seronegative animals. These data indicate that BIV infection is prevalent in Mississippi animals, but the role of BIV in bovine disease remains unclear.
Cancer Letters | 2009
Shailesh Singh; Rajesh Singh; Praveen K. Sharma; Udai P. Singh; Shesh N. Rai; Leland W.K. Chung; Carlton R. Cooper; Kristian Novakovic; William E. Grizzle; James W. Lillard
Chemokines and their corresponding receptor interactions have been shown to be involved in prostate cancer (PCa) progression and organ-specific metastasis. We have recently shown that PCa cell lines and primary prostate tumors express CXCR5, which correlates with PCa grade. In this study, we present the first evidence that CXCL13, the only ligand for CXCR5, and IL-6 were significantly elevated in PCa patient serum compared to serum from subjects with benign prostatic hyperplasia (BPH), or high-grade prostatic intraepithelial neoplasia (HGPIN) as well as normal healthy donors (NHD). Serum CXCL13 levels significantly (p<0.0001) correlated with serum prostate-specific antigen (PSA), whereas serum IL-6 levels significantly (p<0.0003) correlated with CXCL13 serum levels. CXCL13 was found to be a better predictor of PCa than PSA. CXCL13 was highly expressed by human bone marrow endothelial (HBME) cells and osteoblasts (OBs), but not osteoclasts (OCs), following treatment with physiologically relevant levels of interleukin-6 (IL-6). We further demonstrate that CXCL13, produced by IL-6-treated HBME cells, was able to induce PCa cell invasion in a CXCR5-dependent manner. CXCL13-mediated PCa cell adhesion to HBME cells and alpha(v)beta(3)-integrin clustering was abrogated by CXCR5 blockade. These results demonstrate that the CXCL13-CXCR5 axis is significantly associated with PCa progression.