Carme Valero
Polytechnic University of Catalonia
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Carme Valero.
Sensors | 2014
Alexandre Presas; Eduard Egusquiza; Carme Valero; David Valentin; Ulrich Seidel
In this paper, PZT actuators are used to study the dynamic behavior of a rotating disk structure due to rotor-stator interaction excitation. The disk is studied with two different surrounding fluids—air and water. The study has been performed analytically and validated experimentally. For the theoretical analysis, the natural frequencies and the associated mode shapes of the rotating disk in air and water are obtained with the Kirchhoff-Love thin plate theory coupled with the interaction with the surrounding fluid. A model for the Rotor Stator Interaction that occurs in many rotating disk-like parts of turbomachinery such as compressors, hydraulic runners or alternators is presented. The dynamic behavior of the rotating disk due to this excitation is deduced. For the experimental analysis a test rig has been developed. It consists of a stainless steel disk (r = 198 mm and h = 8 mm) connected to a variable speed motor. Excitation and response are measured from the rotating system. For the rotating excitation four piezoelectric patches have been used. Calibrating the piezoelectric patches in amplitude and phase, different rotating excitation patterns are applied on the rotating disk in air and in water. Results show the feasibility of using PZT to control the response of the disk due to a rotor-stator interaction.
IOP Conference Series: Materials Science and Engineering | 2013
Xingxing Huang; Eduard Egusquiza; Carme Valero; Alexandre Presas
In recent decades, in order to increase output power of hydroelectric turbomachinery, the design head and the flow rate of the hydraulic turbines have been increased greatly. This has led to serious vibratory problems. The pump-turbines have to work at various operation conditions to satisfy the requirements of the power grid. However, larger hydraulic forces will result in high vibration levels on the turbines, especially, when the machines operate at off-design conditions. Due to the economic considerations, the pump-turbines are built as light as possible, which will change the dynamic response of the structures. According to industrial cases, the fatigue damage of the pump-turbine runner induced by hydraulic dynamic forces usually happens on the outer edge of the crown, which is near the leading edges of blades. To better understand the reasons for this kind of fatigue, it is extremely important to investigate the dynamic response behaviour of the hydraulic turbine, especially the runner, by experimental measurement and numerical simulation. The pump-turbine runner has a similar dynamic response behaviour of the circular disk. Therefore, in this paper the dynamic response analyses for circular disks with different dimensions and disk-blades-disk structures were carried out to better understand the fundamental dynamic behaviour for the complex turbomachinery. The influences of the pattern and number of blades were discussed in detail.
26th IAHR Symposium on Hydraulic Mavhinery and Systems. Tsinghua University, Beijung, China | 2012
Alexandre Presas; Carme Valero; Xingxing Huang; Eduard Egusquiza; Mohamed Farhat; François Avellan
When in operation, pump-turbine runners have to withstand large pressure pulsations generated by the rotor-stator interaction. The analysis of the dynamic behavior of these structures is necessary to avoid damage. For this analysis a realistic model of the runner is necessary. When the runner is submerged in water and inside the casing, its dynamic response is greatly affected. The added mass effects of the surrounding fluid and the proximity of the head-cover and bottom-cover may reduce the natural frequencies. The frequency reduction produced by the added mass effects and the influence of the boundary conditions has to be known for a safe design of the runner. In this paper an experimental investigation on the dynamic response of a model runner is presented. A reduced scale model of a pump-turbine was tested outside and inside the casing with different boundary conditions. For the excitation of the runner at different frequencies piezoelectric patches were used. The response was measured with miniature accelerometers located in several positions inside the runner. From the measurements the natural frequencies and mode-shapes of the runner were calculated using EMA. The influence of the added mass and of the boundary conditions is presented and discussed.
IOP Conference Series: Earth and Environmental Science | 2010
Carme Valero; Xingxing Huang; Eduard Egusquiza; Mohamed Farhat; François Avellan
A numerical simulation has been carried out to analyze the modal behavior of a reduced scale pump-turbine impeller. The simulation has been done using FEM method, in air and in water. The same boundary conditions than in the experiment were considered: free body in air and free body submerged in a reservoir of water. A sensitivity analysis to determine the influence of the number of elements was done. The influence of the input parameters was also taken into account. Finally, a mesh with 165000 elements for the impeller in air and of 508676 for the impeller in water was used. The results obtained with the simulation have been compared with the experimental ones (paper 1). Both the natural frequency values and the mode-shapes were compared. The numerical results showed small deviation from experiment in the first modes in modes with low modal density. In some coupled modes been found. With the updated model the mode-shapes have been analyzed. Some modes with high modal density have been found. As indicated in the experiment, the effect of the added mass reduces the natural frequencies and also changes the characteristics of the coupled modes.
ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference | 2009
Eduard Egusquiza; Carme Valero; Quanwei Liang; M. Coussirat; Ulrich Seidel
In this paper, the reduction in the natural frequencies of a pump-turbine impeller prototype when submerged in water has been investigated. The impeller, with a diameter of 2.870m belongs to a pump-turbine unit with a power of around 100MW. To analyze the influence of the added mass, both experimental tests and numerical simulations have been carried out. The experiment has been performed in air and in water. From the frequency response functions the modal characteristics such as natural frequencies and mode shapes have been obtained. A numerical simulation using FEM (Finite Elements Model) was done using the same boundary conditions as in the experiment (impeller in air and surrounded by a mass of water). The modal behaviour has also been calculated. The numerical results were compared with the available experimental results. The comparison shows a good agreement in the natural frequency values both in air and in water. The reduction in frequency due to the added mass effect of surrounding fluid has been calculated. The physics of this phenomenon due to the fluid structure interaction has been investigated from the analysis of the mode-shapes.Copyright
Sensors | 2017
Alexandre Presas; David Valentin; Eduard Egusquiza; Carme Valero; Mònica Egusquiza; Matias Bossio
To accurately determine the dynamic response of a structure is of relevant interest in many engineering applications. Particularly, it is of paramount importance to determine the Frequency Response Function (FRF) for structures subjected to dynamic loads in order to avoid resonance and fatigue problems that can drastically reduce their useful life. One challenging case is the experimental determination of the FRF of submerged and confined structures, such as hydraulic turbines, which are greatly affected by dynamic problems as reported in many cases in the past. The utilization of classical and calibrated exciters such as instrumented hammers or shakers to determine the FRF in such structures can be very complex due to the confinement of the structure and because their use can disturb the boundary conditions affecting the experimental results. For such cases, Piezoelectric Patches (PZTs), which are very light, thin and small, could be a very good option. Nevertheless, the main drawback of these exciters is that the calibration as dynamic force transducers (relationship voltage/force) has not been successfully obtained in the past. Therefore, in this paper, a method to accurately determine the FRF of submerged and confined structures by using PZTs is developed and validated. The method consists of experimentally determining some characteristic parameters that define the FRF, with an uncalibrated PZT exciting the structure. These parameters, which have been experimentally determined, are then introduced in a validated numerical model of the tested structure. In this way, the FRF of the structure can be estimated with good accuracy. With respect to previous studies, where only the natural frequencies and mode shapes were considered, this paper discuss and experimentally proves the best excitation characteristic to obtain also the damping ratios and proposes a procedure to fully determine the FRF. The method proposed here has been validated for the structure vibrating in air comparing the FRF experimentally obtained with a calibrated exciter (impact Hammer) and the FRF obtained with the described method. Finally, the same methodology has been applied for the structure submerged and close to a rigid wall, where it is extremely important to not modify the boundary conditions for an accurate determination of the FRF. As experimentally shown in this paper, in such cases, the use of PZTs combined with the proposed methodology gives much more accurate estimations of the FRF than other calibrated exciters typically used for the same purpose. Therefore, the validated methodology proposed in this paper can be used to obtain the FRF of a generic submerged and confined structure, without a previous calibration of the PZT.
Journal of Vibration and Acoustics | 2017
David Valentin; Alexandre Presas; Eduard Egusquiza; Carme Valero; Mònica Egusquiza
Determining the dynamic response of submerged and confined disklike structures is of interest in engineering applications, such as in hydraulic turbine runners. This dynamic response is heavily affected by the added mass and damping as well as the proximity of solid boundaries. These solid boundaries are normally considered as completely rigid in theoretical or numerical calculations, however, this assumption is not always valid. Some hydraulic turbines have noncompletely stiff casings, which can modify the dynamic response of the runner itself, affecting specially its natural frequencies and damping behavior. To determine the influence of noncompletely rigid nearby surfaces in the dynamic behavior of a submerged structure, an experimental test rig has been constructed. This test rig is based on a disk attached to a shaft and confined in a tank covered with two different casings with different mass and stiffness. For both covers and different disk to cover distances, natural frequencies and damping ratios of the disk have been obtained experimentally. Accelerometers installed on the disk and covers as well as pressure sensors are used for this purpose. Results obtained for all the cases are discussed in detail and compared with a simplified theoretical model.
Journal of physics: conference series, vol. 813, no. 1, April 4, 2017 | 2017
Alexandre Presas; David Valentin; Eduard Egusquiza; Carme Valero
Francis turbines operate in many cases out of its best effici ency point, in order to regulate their output power according to the instantaneous ener gy demand of the grid. Therefore, it is of paramount importance to analyse and determine the unst able operating points for these kind of units. In the framework of the HYPERBOLE project (FP7-E NERGY-2013-1; Project number 608532) a large Francis unit was investigated numericall y, experimentally in a reduced scale model and also experimen tally and numerically in the real prototype. This paper shows the unstable operating points identified during the experimental te sts on the real Francis unit and the analysis of the main characteristics of these instabilities. Fi nally, it is shown that similar phenomena have been identified on previous research in the LMH (Laboratory for Hydraulic Machines, Lausanne) with t he reduced scale model.
IOP Conference Series: Earth and Environmental Science | 2016
David Valentin; David Ramos; Matias Bossio; Alexandre Presas; Eduard Egusquiza; Carme Valero
Natural frequencies estimation of Francis turbines is of paramount importance in the stage of design in order to avoid vibration and resonance problems especially during transient events. Francis turbine runners are submerged in water and confined with small axial and radial gaps which considerably decrease their natural frequencies in comparison to the same structure in the air. Acoustic-structural FSI simulations have been used to evaluate the influence of these gaps. This model considers an entire prototype of a Francis turbine, including generator, shaft, runner and surrounding water. The radial gap between the runner and the static parts has been changed from the real configuration (about 0.04% the runner diameter) to 1% of the runner diameter to evaluate its influence on the machine natural frequencies. Mode-shapes and natural frequencies of the whole machine are discussed for all the boundary conditions tested.
Sensors | 2018
David Valentin; Alexandre Presas; Matias Bossio; Mònica Egusquiza; Eduard Egusquiza; Carme Valero
Nowadays, hydropower plays an essential role in the energy market. Due to their fast response and regulation capacity, hydraulic turbines operate at off-design conditions with a high number of starts and stops. In this situation, dynamic loads and stresses over the structure are high, registering some failures over time, especially in the runner. Therefore, it is important to know the dynamic response of the runner while in operation, i.e., the natural frequencies, damping and mode shapes, in order to avoid resonance and fatigue problems. Detecting the natural frequencies of hydraulic turbine runners while in operation is challenging, because they are inaccessible structures strongly affected by their confinement in water. Strain gauges are used to measure the stresses of hydraulic turbine runners in operation during commissioning. However, in this paper, the feasibility of using them to detect the natural frequencies of hydraulic turbines runners while in operation is studied. For this purpose, a large Francis turbine runner (444 MW) was instrumented with several strain gauges at different positions. First, a complete experimental strain modal testing (SMT) of the runner in air was performed using the strain gauges and accelerometers. Then, the natural frequencies of the runner were estimated during operation by means of analyzing accurately transient events or rough operating conditions.