Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carmela Conte is active.

Publication


Featured researches published by Carmela Conte.


The Cerebellum | 2012

Gait pattern in inherited cerebellar ataxias

Mariano Serrao; Francesco Pierelli; Alberto Ranavolo; Francesco Draicchio; Carmela Conte; Romildo Don; Roberto Di Fabio; Margherita Lerose; Luca Padua; Giorgio Sandrini; Carlo Casali

Our aim was to perform a comprehensive analysis of the global and segmental features of gait in patients with genetically confirmed inherited ataxias. Sixteen patients with autosomal dominant (spinocerebellar ataxia, SCA1 or 2) or recessive (Friedreich’s ataxia, FRDA) ataxia were studied. We used a motion analysis system to record gait kinematic and kinetic data. We measured the mean values of global (time–distance parameters, COM displacement, support moment) and segmental gait parameters (joint displacement and inter-joint coordination), as both discrete and continuous variables, and their variability and correlations with International Cooperative Ataxia Rating Scale (ICARS) scores. We found a marked difference in all global gait parameters between the ataxic patients and the controls and close correlations between longer stride and stance duration and lower gait, posture and total ICARS scores. The only difference between the two patient groups was a shorter step length in the FRDA patients. As regards the segmental features, we found a significantly different waveform shape for all continuous kinematic and kinetic measures between the ataxic patients and the healthy controls, but only minor differences for the discrete measures. Intersegmental coordination evaluated using the continuous relative phase method revealed an irregular alternating joint behaviour without clear evidence of the synchronous pattern of alternating proximal/distal joint seen in healthy subjects. For almost all gait parameters we observed a markedly higher intra-subject variability in the ataxic patients versus the controls, which was strongly related to the clinical ICARS scores. Patients with chronic, progressive inherited ataxias lose the ability to “stabilize” a walking pattern that can be repeated over time. The most peculiar aspect of the gait of inherited ataxia patients, regardless the different genetic forms, seems to be the presence of increased variability of all global and segmental parameters rather than an invariant abnormal gait pattern.


Journal of Neurophysiology | 2014

Locomotor patterns in cerebellar ataxia

Giovanni Martino; Yuri P. Ivanenko; Mariano Serrao; Alberto Ranavolo; Andrea d'Avella; Francesco Draicchio; Carmela Conte; Carlo Casali; Francesco Lacquaniti

Several studies have demonstrated how cerebellar ataxia (CA) affects gait, resulting in deficits in multijoint coordination and stability. Nevertheless, how lesions of cerebellum influence the locomotor muscle pattern generation is still unclear. To better understand the effects of CA on locomotor output, here we investigated the idiosyncratic features of the spatiotemporal structure of leg muscle activity and impairments in the biomechanics of CA gait. To this end, we recorded the electromyographic (EMG) activity of 12 unilateral lower limb muscles and analyzed kinematic and kinetic parameters of 19 ataxic patients and 20 age-matched healthy subjects during overground walking. Neuromuscular control of gait in CA was characterized by a considerable widening of EMG bursts and significant temporal shifts in the center of activity due to overall enhanced muscle activation between late swing and mid-stance. Patients also demonstrated significant changes in the intersegmental coordination, an abnormal transient in the vertical ground reaction force and instability of limb loading at heel strike. The observed abnormalities in EMG patterns and foot loading correlated with the severity of pathology [International Cooperative Ataxia Rating Scale (ICARS), a clinical ataxia scale] and the changes in the biomechanical output. The findings provide new insights into the physiological role of cerebellum in optimizing the duration of muscle activity bursts and the control of appropriate foot loading during locomotion.


The Cerebellum | 2014

Lower Limb Antagonist Muscle Co-Activation and its Relationship with Gait Parameters in Cerebellar Ataxia

Silvia Mari; Mariano Serrao; Carlo Casali; Carmela Conte; Giovanni Martino; Alberto Ranavolo; Gianluca Coppola; Francesco Draicchio; Luca Padua; Giorgio Sandrini; Francesco Pierelli

Increased antagonist muscle co-activation, seen in motor-impaired individuals, is an attempt by the neuromuscular system to provide mechanical stability by stiffening joints. The aim of this study was to investigate the co-activation pattern of the antagonist muscles of the ankle and knee joints during walking in patients with cerebellar ataxia, a neurological disease that strongly affects stability. Kinematic and electromyographic parameters of gait were recorded in 17 patients and 17 controls. Ankle and knee antagonist muscle co-activation indexes were measured throughout the gait cycle and during the sub-phases of gait. The indexes of ataxic patients were compared with those of controls and correlated with clinical and gait variables. Patients showed increased co-activity indexes of both ankle and knee muscles during the gait cycle as well as during the gait sub-phases. Both knee and ankle muscle co-activation indexes were positively correlated with disease severity, while ankle muscle co-activation was also positively correlated with stance and swing duration variability. Significant negative correlations were observed between the number of self-reported falls per year and knee muscle co-activation. The increased co-activation observed in these cerebellar ataxia patients may represent a compensatory strategy serving to reduce gait instability. Indeed, this mechanism allows patients to reduce the occurrence of falls. The need for this strategy, which results in excessive muscle co-contraction, increased metabolic costs and cartilage degeneration processes, could conceivably be overcome through the use of supportive braces specially designed to provide greater joint stability.


Experimental Brain Research | 2012

Turning strategies in patients with cerebellar ataxia

Silvia Mari; Mariano Serrao; Carlo Casali; Carmela Conte; Alberto Ranavolo; Luca Padua; Francesco Draicchio; Sergio Iavicoli; Stefano Monamì; Giorgio Sandrini; Francesco Pierelli

Turning while walking is a common but demanding task requiring modification of the motor program from linear walking to lateral turning and it is associated with a high risk of falls. Patients with cerebellar ataxia have unstable gait and report a high incidence of falls. In the present study, we investigated the motor strategies adopted by ataxic patients when performing turns of different degrees and directions of rotation. Ten ataxic patients and 10 controls were analyzed while performing 30°/90° turns to the right/left. We recorded the number of completed turn tasks, the number of steps needed, and the time taken to complete the task, time–distance parameters and the onset of head, trunk and pelvis reorientation. The ataxic patients were less able to complete 90° turns, displayed a greater stride width, shorter step length, and greater number of steps when turning, and were unable to flexibly adjust their stride width across the turning task. The duration of the turning task and of the segmental reorientation did not differ from control values. Our findings indicate that ataxic patients have more difficulties in performing large turns and adopt a series of compensatory strategy aimed at reducing the instability associated with turning, such as enlarge the base of support, shorten the step length, increase the number of steps, and use the “multi-step” rather than the “spin-turn” strategy. Given the high risk of falls related to this task, it would be useful to include turning training in the rehabilitation protocol of ataxic patients.


The Cerebellum | 2013

Strategies adopted by cerebellar ataxia patients to perform U-turns.

Mariano Serrao; Silvia Mari; Carmela Conte; Alberto Ranavolo; Carlo Casali; Francesco Draicchio; Roberto Di Fabio; Michelangelo Bartolo; Stefano Monamì; Luca Padua; Francesco Pierelli

Cerebellar ataxia is associated with unsteady, stumbling gait, and affected patients report a high rate of falls, particularly during locomotor tasks. U-turns (180° turns while walking) require a high level of coordination in order to completely reverse the body trajectory during ongoing motion, and they are particularly challenging for patients with cerebellar ataxia. The aim of this study was to investigate the kinematic strategies adopted by ataxic patients when performing U-turns. Nine ataxic patients and ten controls were analysed as they performed 180° turns to the right while walking. We evaluated the following aspects: centre of mass velocity, body rotation, number of steps needed to complete the task, step length and step width, lower limb joint kinematics and segmental reorientation. Compared with controls, the ataxic patients showed slower deceleration and re-acceleration of the body, needed more steps to complete the U-turn, showed markedly reduced step length and were unable to modulate step width between steps. Furthermore, the patients adopted an extended joint rather than a flexed joint turning strategy, and the degree of knee flexion was found to be negatively correlated with the number of falls. Ataxic patients show an abnormal U-turn in comparison to age-matched healthy subjects. Some of the observed alterations are indicative of a primary deficit in limb-joint coordination, whereas others suggest that patients choose a compensatory strategy aimed at reducing the instability.


The Cerebellum | 2012

Planned Gait Termination in Cerebellar Ataxias

Carmela Conte; Mariano Serrao; Carlo Casali; Alberto Ranavolo; Mari Silvia; Francesco Draicchio; Roberto Di Fabio; Stefano Monamì; Luca Padua; Sergio Iavicoli; Giorgio Sandrini; Francesco Pierelli

This study set out to characterise the pattern of planned gait termination in a sample of patients with cerebellar diseases. The gait termination phase was recorded, using a motion analysis system, in ten patients with primary degenerative cerebellar disease and in ten controls. The subjects were instructed to walk at different gait speeds and to stop in response to an acoustic signal. Time–distance parameters (step length, step width, double support duration, time-to-slow, stopping time, centre of mass velocity and number of steps) and stability index-related parameters (distance between the “extrapolated centre of mass” (XCoM) and centre of pressure (CoP)) were measured at both matched and self-selected gait speeds. At matched speed the patients, compared with the controls, showed a reduced step length, a greater first and second step width and used more steps to stop. At self-selected speed, almost all the parameters differed from those of the controls. Furthermore, the patients showed an increased stability index, suggesting that they need to maintain a “safety margin” between the XCoM and CoP during the gait termination. Patients develop a series of compensatory strategies in order to preserve balance during planned gait termination, e.g. increasing their step width and number of steps. Ataxic patients need to maintain a safety margin in order to avoid instability when stopping. Given the potential risk of falls when stopping, walking ataxic patients may benefit from a rehabilitation treatment focused on preserving and improving their ability to terminate gait safely.


The Cerebellum | 2017

Local Stability of the Trunk in Patients with Degenerative Cerebellar Ataxia During Walking.

Giorgia Chini; Alberto Ranavolo; Francesco Draicchio; Carlo Casali; Carmela Conte; Giovanni Martino; Luca Leonardi; Luca Padua; Gianluca Coppola; Francesco Pierelli; Mariano Serrao

This study aims to evaluate trunk local stability in a group of patients with degenerative primary cerebellar ataxia and to correlate it with spatio-temporal parameters, clinical variables, and history of falls. Sixteen patients affected by degenerative cerebellar ataxia and 16 gender- and age-matched healthy adults were studied by means of an inertial sensor to measure trunk kinematics and spatio-temporal parameters during over-ground walking. Trunk local dynamic stability was quantified by the maximum Lyapunov exponent with short data series of the acceleration data. According to this index, low values indicate more stable trunk dynamics, while high values denote less stable trunk dynamics. Disease severity was assessed by means of International Cooperative Ataxia Rating Scale (ICARS) according to which higher values correspond to more severe disease, while lower values correspond to less severe disease.Patients displayed a higher short-term maximum Lyapunov exponent than controls in all three spatial planes, which was correlated with the age, onset of the disease, and history of falls. Furthermore, the maximum Lyapunov exponent was negatively correlated with ICARS balance, ICARS posture, and ICARS total scores.These findings indicate that trunk local stability during gait is lower in patients with cerebellar degenerative ataxia than that in healthy controls and that this may increase the risk of falls. Local dynamic stability of the trunk seems to be an important aspect in patients with ataxia and could be a useful tool in the evaluation of rehabilitative and pharmacological treatment outcomes.


The Cerebellum | 2014

Upper Body Kinematics in Patients with Cerebellar Ataxia

Carmela Conte; Francesco Pierelli; Carlo Casali; Alberto Ranavolo; Francesco Draicchio; Giovanni Martino; Mahmoud Harfoush; Luca Padua; Gianluca Coppola; Giorgio Sandrini; Mariano Serrao

Although abnormal oscillations of the trunk are a common clinical feature in patients with cerebellar ataxia, the kinematic behaviour of the upper body in ataxic patients has yet to be investigated in quantitative studies. In this study, an optoelectronic motion analysis system was used to measure the ranges of motion (ROMs) of the head and trunk segments in the sagittal, frontal and yaw planes in 16 patients with degenerative cerebellar ataxia during gait at self-selected speed. The data obtained were compared with those collected in a gender-, age- and gait speed-matched sample of healthy subjects and correlated with gait variables (time-distance means and coefficients of variation) and clinical variables (disease onset, duration and severity). The results showed significantly larger head and/or trunk ROMs in ataxic patients compared with controls in all three spatial planes, and significant correlations between trunk ROMs and disease duration and severity (in sagittal and frontal planes) and time-distance parameters (in the yaw plane), and between both head and trunk ROMs and swing phase duration variability (in the sagittal plane). Furthermore, the ataxic patients showed a flexed posture of both the head and the trunk during walking. In conclusion, our study revealed abnormal motor behaviour of the upper body in ataxic patients, mainly resulting in a flexed posture and larger oscillations of the head and trunk. The results of the correlation analyses suggest that the longer and more severe the disease, the larger the upper body oscillations and that large trunk oscillations may explain some aspects of gait variability. These results suggest the need of specific rehabilitation treatments or the use of elastic orthoses that may be particularly useful to reduce trunk oscillations and improve dynamic stability.


The Cerebellum | 2013

Sudden Stopping in Patients with Cerebellar Ataxia

Mariano Serrao; Carmela Conte; Carlo Casali; Alberto Ranavolo; Silvia Mari; Roberto Di Fabio; Armando Perrotta; Gianluca Coppola; Luca Padua; Stefano Monamì; Giorgio Sandrini; Francesco Pierelli

Stopping during walking, a dynamic motor task frequent in everyday life, is very challenging for ataxic patients, as it reduces their gait stability and increases the incidence of falls. This study was conducted to analyse the biomechanical characteristics of upper and lower body segments during abrupt stopping in ataxic patients in order to identify possible strategies used to counteract the instability in the sagittal and frontal plane. Twelve patients with primary degenerative cerebellar ataxia and 12 age- and sex-matched healthy subjects were studied. Time–distance parameters, dynamic stability of the centre of mass, upper body measures and lower joint kinematic and kinetic parameters were analysed. The results indicate that ataxic patients have a great difficulty in stopping abruptly during walking and adopt a multi-step stopping strategy, occasionally with feet parallel, to compensate for their inability to coordinate the upper body and to generate a well-coordinated lower limb joint flexor–extensor pattern and appropriate braking forces for progressively decelerating the progression of the body in the sagittal plane. A specific rehabilitation treatment designed to improve the ability of ataxic patients to transform unplanned stopping into planned stopping, to coordinate upper body and to execute an effective flexion–extension pattern of the hip and knee joints may be useful in these patients in order to improve their stopping performance and prevent falls.


Ergonomics | 2015

A new muscle co-activation index for biomechanical load evaluation in work activities

Alberto Ranavolo; Silvia Mari; Carmela Conte; Mariano Serrao; Alessio Silvetti; Sergio Iavicoli; Francesco Draicchio

Low-back disorders (LBDs) are the most common and costly musculoskeletal problem. Muscle co-activation, a mechanism that stabilises the spine, is adopted by the central nervous system to provide added protection and avoid LBDs. However, during high-risk lifting tasks, the compressive load on the spine grows owing to increased co-activation. The aim of this study was to develop a method for the sample-by-sample monitoring of the co-activation of more than two muscles, and to compare this method with agonist–antagonist methods. We propose a time-varying multi-muscle co-activation function that considers electromyographic (EMG) signals as input. EMG data of 10 healthy subjects were recorded while they manually lifted loads at three progressively heavier conditions. The repeated measures ANOVA revealed a significant effect of lifting condition on our co-activation index. Heavier conditions resulted in higher muscle co-activation values. Significant correlations were found between the time-varying multi-muscle co-activation index and other agonist–antagonist methods. Practitioner Summary: We have developed a method to quantify muscle co-activation during the execution of a lifting task. To do this we used surface electromyography. Our algorithm provides a measure of time-varying co-activation between more than two muscles.

Collaboration


Dive into the Carmela Conte's collaboration.

Top Co-Authors

Avatar

Mariano Serrao

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Alberto Ranavolo

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Francesco Pierelli

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Carlo Casali

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Gianluca Coppola

Sapienza University of Rome

View shared research outputs
Top Co-Authors

Avatar

Luca Padua

Catholic University of the Sacred Heart

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Giovanni Martino

University of Rome Tor Vergata

View shared research outputs
Top Co-Authors

Avatar

Armando Perrotta

Sapienza University of Rome

View shared research outputs
Researchain Logo
Decentralizing Knowledge